

March 2022 UD21-110

Functional Servicing and Stormwater

Management Report

Project: 48 Grenoble Drive

Microbjo Properties Inc. c/o Tenblock

Lithos Group Inc. 150 Bermondsey Road North York, ON M1A-1Y1 Tel: (416) 750-7769

Email: info@LithosGroup.ca

PREPARED BY:

Isaak Chlorotiris, P.E., M.A.Sc. Project Designer

REVIEWED BY:

John Pasalidis, P.E., M.A.Sc. Project Engineer AUTHORIZED FOR ISSUE BY: LITHOS GROUP INC.

Nick Moutzouris, P.Eng., M.A.Sc. Principal

Identification	Date	Description of issued and/or revision
FSR/SWM Report	March 18 th , 2022	Issued for Zoning and Site Plan Application

Statement of Conditions

This Report / Study (the "Work") has been prepared at the request of, and for the exclusive use of, the Owner / Client, the City of Toronto and its affiliates (the "Intended User"). No one other than the Intended User has the right to use and rely on the Work without first obtaining the written authorization of Lithos Group Inc. and its Owner. Lithos Group Inc. expressly excludes liability to any party except the intended User for any use of, and/or reliance upon, the work.

Neither possession of the Work, nor a copy of it, carries the right of publication. All copyright in the Work is reserved to Lithos Group Inc. The Work shall not be disclosed, produced or reproduced, quoted from, or referred to, in whole or in part, or published in any manner, without the express written consent of Lithos Group Inc. and the Owner.

Executive Summary

Lithos Group Inc. (Lithos) was retained by Microbjo Properties Inc. (the "Owner") to prepare a Functional Servicing and Stormwater Management (FSR-SWM) Report in support of Zoning and Site Plan Application for a proposed residential development at 48 Grenoble Drive, in the City of Toronto (the "City"). The following is a summary of our conclusions:

Storm Drainage

The site stormwater discharge will be controlled to the 2-year pre-development flow and will be connected to the proposed 300mm diameter storm sewer on Grenoble Drive. In order to attain the target flows and meet the City's Wet Weather Flow Management Guidelines (WWFMG), quantity controls will be utilized and up to 115.3 m³ on-site storage will be required for the proposed residential development. The stormwater management (SWM) system will be designed to provide enhanced level (Level 1) protection as specified by the Ministry of Environment, Conversation and Parks (MECP). Quality control will be provided for the subject site for a minimum total suspended solids (TSS) removal of 80%.

Sanitary Sewers

Three (3) separate connections will be provided for the proposed development: one for the East Tower; one for the Podium; and one for the West Tower. All sanitary connections will lead to a proposed 450 mm diameter sanitary sewer on Grenoble Drive flowing West. The additional net discharge flow from the entire property (proposed and existing development), is anticipated at approximately 15.17 L/s.

Under Dry and Wet-Weather, post-development conditions, the maximum downstream capacity of the sanitary sewer network will not be exceeded, and the freeboard distance will be well over 1.8m. Therefore, the property under proposed conditions will not adversely affect flow conditions downstream and the existing infrastructure will be capable to support the proposed development.

Water Supply

Five (5) separate fire lines will be provided for the proposed development: two (2) for the East Tower; two (2) for the West Tower; and one for the Podium according to the Ontario Building Code (OBC), to support the proposed development's sprinkler system. In addition, three (3) of the above noted fire lines will split into domestic connections that will service the proposed development. Water supply for the site will be from the existing 400 mm diameter watermain on the East side of Deauville Lane and the existing 400 mm diameter watermain on the North side of Grenoble Drive. Upon receipt of the fire hydrant test results in spring of 2022, an addendum to this report will be prepared and submitted to the City on the "Client's" behalf.

Site Grading

The proposed grades will match current drainage patterns wherever feasible. Grades will be maintained along property lines to the extent practical. Furthermore, under post-development conditions, there will be no surface drainage towards the Parkland Dedication portion of the site from the residential development.

Table of Contents

1.0	Introduction	1
2.0	Site Description	1
3.0	Site Proposal	1
4.0	Terms of Reference and Methodology	
	4.1. Terms of Reference	2
	4.2. Methodology: Stormwater Drainage and Management	2
	4.3. Methodology: Sanitary Discharge	2
	4.4. Methodology: Water Usage	3
5.0	Stormwater Management and Drainage	3
	5.1. Existing Conditions	3
	5.2. Stormwater Management	4
	5.2.1. Water Balance	5
	5.2.2. Quantity Controls	5
	5.2.3. Underground Storage Tank	
	5.2.4. Quality Controls	
	5.3. Proposed Storm Connection	
6.0	Sanitary Drainage System	7
0.0	6.1. Existing Sanitary Drainage System	
	6.2. Existing and Proposed Sanitary Flows	
	6.3. Proposed Sanitary Connection	
	0.5. Proposed Saintary Connection	0
7.0	Groundwater	8
	7.1. Long Term Dewatering	8
	7.2. Short Term Dewatering	8
8.0	Sanitary Sewer Capacity Analysis	8
	8.1. Capacity Assessment Results	
9.0	Water Supply System	10
	9.1. Existing System	.10
	9.2. Proposed Water Supply Requirements	.10
	9.3. Proposed Watermain Connection	.12
10.0	Site Grading	12
	10.1. Existing Grades	
	10.2. Proposed Grades.	
11.0	Conclusions and Recommendations.	13

Functional Servicing and Stormwater Management Report

List of Figures

Figure 1 - Location Plan

Figure 2 - Aerial Plan

List of Tables

Table 4-1 – Sanitary Flows	3
Table 4-2 – Water Usage	
Table 5-1 – Target Input Parameters	
Table 5-2 – Target Peak Flows	
Table 5-3 – Post-development Input Parameters	
Table 5-4 – Post-development Quantity Control as per City Requirements	
Table 5-5 – Site TSS Removal	
Table 9.1 – Fire Flow Input Parameters (West Tower)	
Table 9-2 – Fire Flow Input Parameters (East Tower)	
Table 9-3 – Fire Flow Input Parameters (Podium)	

Appendices

Appendix A – Site Photographs

Appendix B – Background Information

Appendix C – Stormwater Analysis

Appendix D – Sanitary Data Analysis

Appendix E – Water Data Analysis

1.0 Introduction

Lithos Group Inc. (Lithos) was retained by Microbjo Properties Inc. (the "Owner") to prepare a Functional Servicing and Stormwater Management (FSR-SWM) Report in support of Zoning and Site Plan Applications for a proposed residential use development at 48 Grenoble Drive (M3C 1C8), in the City of Toronto (City).

The purpose of this report is to provide site-specific information for the City's review with respect to infrastructure, required to support the proposed development. More specifically, the report will present details on sanitary discharge, water supply and stormwater management drainage.

We contacted the City's engineering department to obtain existing information in preparation of this report. The following documents were available for our review:

- Plan and profile drawings of Deauville Lane, from Grenoble Drive to Rochefort Drive, drawing No. D-186-01, dated October, 1959;
- Plan and profile drawings of Easement, from Grenoble Drive to St. Dennis Drive, drawing No. SA-58-R-01, dated January, 1967;
- Plan and profile drawings of Grenoble Drive, from Gateway Boulevard to Deauville Lane, drawing No. G-113-03, January, 1967;
- Toronto CU Maps of Grenoble Drive and Deauville Lane;
- Geotechnical engineering report by Grounded Engineering Inc., dated March 11, 2022;
- Hydrogeological review report by Grounded Engineering Inc., dated March 10, 2022;
- Site Plan prepared by Diamond Schmitt Architects, dated March 18, 2022;
- Site Statistics prepared by Diamond Schmitt Architects, dated March 18, 2022;
- Survey Plan prepared by R. AVIS SURVEYING INC., dated August 4, 2021.

2.0 Site Description

The existing site is approximately $6,748.9 \text{ m}^2$ (0.674 hectares). It is currently occupied by residential development, facilitated by outdoor parking area. The site is bound by a residential development to the north, Deauville Lane to the east, Grenoble Drive to the south and Parkland to the west. Refer to Figures 1 and 2 following this report and site photographs in Appendix A.

The entire City was deemed as an area of basement flooding. As shown in the updated map, included in **Appendix B**, Environmental Assessment (EA) Studies are being performed across the City of Toronto, separated in areas. According to the "Current Basement Flooding Investigation Environmental Assessment Studies" for the City of Toronto found online, the site is located in area 55 into which, EA study is in progress.

3.0 Site Proposal

The proposed development will be comprised by:

- A residential high-rise development;
- Parkland area to be dedicated to the City.

The proposed development will consist of a 6-storey podium with two (2) high-rise, 43-storey and 41-storey towers, supporting residential use.

It will consist of 993 residential units and will be facilitated by four (4) levels of underground parking. The total development will be approximately 67,941 m² of Gross Floor Area (GFA).

The west portion of the site, with an area of 677 m², will be dedicated to the City to be used as parkland. Please refer to **Appendix B** for the proposed site plan and statistics.

4.0 Terms of Reference and Methodology

4.1. Terms of Reference

The Terms of Reference used for the scope of this report were based on the City's Development Guide Servicing Report Terms of Reference, December 2007, the January 2021 Second Edition of the City of Toronto Design Criteria for Sewers and Watermains and the November 2006 Wet Weather Flow Management Guidelines (WWFMG).

All erosion and sediment control BMP's shall be designed, constructed and maintained in all development sites in accordance with the GTA CA's Erosion and Sediment Control Guidelines for Urban Construction (2005) and/or other City of Toronto requirements on a site-by-site basis.

4.2. Methodology: Stormwater Drainage and Management

This report provides a detailed Stormwater Management (SWM) review of the pre-development and post-development conditions and comments on opportunities to reduce peak flows. This is illustrated on a proposed servicing connection plan. Other requirements set by the WWFMG will also be discussed.

The proposed development will be designed to meet the City's WWFMG and the standards of the Province of Ontario as set out in the Ministry of Environment, Conservation and Parks (MECP) 2003 Stormwater Management Planning and Design Manual (SWMPD). The following design criteria will be reviewed:

- Post-development peak flow for the 100-year storm event from the site will be controlled to the two (2)-year target flow;
- A specified rainfall depth of 5 mm is to be retained on-site, as required by the WWFMG; and,
- A safe overland flow will be provided for all flows in excess of the 100-year storm event.

4.3. Methodology: Sanitary Discharge

The sanitary sewage discharge from the site will be determined using sanitary sewer design sheets that incorporate the land use and building statistics, as supplied by the design team. The calculated values provide peak sanitary discharge flow that considers infiltration.

The estimated sanitary discharge flows from the proposed site will be calculated based on the criteria shown in **Table 4-1** below.

City of Toronto

Table 4-1 – Sanitary Flows

Usage	Design Flow	Units	Population Equivalent
Residential	240	Litres / capita / day	Townhouse unit = 2.7 ppu Studio/1 Bedroom Unit = 1.4 ppu 2 Bedroom Unit = 2.1 ppu
			3 Bedroom Unit = 3.1 ppu

Based on the calculated peak flows, the adequacy of the existing infrastructure to support the proposed development will be discussed.

4.4. Methodology: Water Usage

The fire flow requirements were estimated using the method prescribed by the Fire Underwriters Survey (FUS). This method is based on the fire protected building floors, the type and combustibility of the structural frame and the separation distances with adjoining building units. The domestic water usage was calculated based on the City's design criteria (OBC Table 8.2.3.B) outlined in **Table 4-2** below.

Table 4-2 – Water Usage

Usage	Water Demand	Units
Residential	190	Litres / capita / day

Pressure and flow testing will be conducted on hydrants, in the vicinity of the proposed development to obtain existing flows, residual and static pressure on the existing infrastructure along Grenoble Drive and Deauville Lane. The results will be compared to the anticipated domestic and fire protection usage to determine if there is adequate capacity to support the development. Upon receipt of the test results, an addendum to this report will be prepared and submitted to the City on the "Client's" behalf.

5.0 Stormwater Management and Drainage

5.1. Existing Conditions

According to available records, there are three (3) existing storm sewers abutting the subject property. More specifically, there is:

- A 300 mm diameter storm sewer on Grenoble Drive, flowing west;
- A 375 mm diameter storm sewer within the parkland area, flowing south; and
- A 450 mm diameter storm sewer on Deauville Lane, flowing north.

Residential Development

Following an investigation (please refer to 'Pre Development Site Investigation Report' prepared by Lithos Group dated March 8th, 2022 in **Appendix B**), it was discovered that storm water from the existing building located at 48 Grenoble Drive reaches the storm sewer networks at Grenoble Drive and Deauville Lane. Refer to drainage figure **DAP-1** in **Appendix C**. Furthermore, our investigation showed that there is no overland external storm flow towards our site under pre-development conditions.

Parkland Dedication

The existing Park and future Parkland Dedication is located at the west portion of the site. As mentioned above, storm runoff from that area flows overland uncontrolled towards the City's storm sewer network at Grenoble Drive.

The existing run-off coefficients are estimated based on the infiltration of the area as well as the City's WWFMG guidelines. **Table 5-1** shows the input parameters which are illustrated on the predevelopment drainage area plan in **Figure DAP-1** in **Appendix C**.

Catchment	Drainage Area (ha)	Design "C"	Tc (min.)
A1 Pre – towards Grenoble Drive	0.549	0.50	10
A2 Pre – towards Deauville Lane	0.067	0.25	10
A3 Pre – towards Grenoble Drive	0.058	0.32	10

Table 5-1 – Target Input Parameters

Peak flows calculated for the existing conditions are shown in **Table 5-2** below. Detailed calculations are in **Appendix C**.

Catchment	Peak Flow Rational Method (L/s)				
catemient	2-year	5-year	100-year		
A1 Pre – towards Grenoble Drive	67.2	100.5	190.9		
A2 Pre – towards Deauville Lane	4.5	6.8	12.9		
A3 Pre – towards Grenoble Drive	4.1	6.1	11.6		

Table 5-2 – Target Peak Flows

As shown in **Table 5-2**, post-development flows will need to be controlled to the target flow of 67.2 L/s + 4.1 L/s = 71.3 L/s for the entire site (including the development and parkland dedication).

The proposed storm sewer connection for the development will be to the existing 300 mm diameter storm sewer on Grenoble Drive. In order to ensure that storm discharge flow from the site will not have an adverse impact on the storm sewer network under post-development conditions, the existing 2-year event flow towards Grenoble Drive of 67.2 L/s + 4.1 L/s = 71.3 L/s, will be used as a target flow. Refer to Pre-development storm flow contribution into the municipal lane calculation in Appendix C, for the calculated target flow.

5.2. Stormwater Management

In order to meet the WWFMG criteria, the post development flow rate from the subject site is to be controlled to the two (2)-year target flow established in **Section 4.2**. The site consists of six (6) internal drainage areas:

- 1. A1 Post Storm runoff from the green roof, controlled into the underground storage tank;
- A2 Post Storm runoff from the rooftop/terraces/walkways, controlled into the underground storage tank;

- 3. A3 Post Storm runoff from driveway, controlled into the underground storage tank;
- 4. A4 Post Storm runoff from landscape surfaces, controlled into the underground storage tank;
- 5. A5 Post Storm runoff from Hardscape surfaces, uncontrolled area. and
- 6. A6 Post –Storm runoff from the Parkland Dedication uncontrolled area.

The post-development drainage areas and runoff coefficients are indicated on Figure DAP-2, located in Appendix C and summarized in Table 5-3 below.

Drainage Area	Drainage Area (ha)	"C"	Tc (min.)
A1 Post - Green Roof (Controlled in Tank)	0.095	0.25	10
A2 Post - Rooftop/Terraces/walkways (Controlled in Tank)	0.310	0.90	10
A4 Post - Driveway (Controlled in Tank)	0.014	0.90	10
A4 Post - Landscape (Controlled in Tank)	0.158	0.25	10
A5 Post - Hardscape (uncontrolled area)	0.030	0.90	10
A6 Post- Parkland Dedication (Uncontrolled area)	0.068	0.25	10

Table 5-3 - Post-development Input Parameters

5.2.1. Water Balance

Residential Development

The City's WWFMG requires 5 mm of rainfall over the site equates to a required water balance volume of 30.37 m³. In order to achieve this, the following low impact development (LID) techniques may be implemented.

- Rainwater captured in storage tank to be reused for irrigation purposes; and,
- Green Roof and Planters.

Based on the initial abstraction values, the entire site will provide 16.19 m³ of initial abstraction in post-development conditions and the remaining 14.17 m³ will initially be retained at the bottom of the proposed underground storage tank. Then with a pump a minimum of 6.50 m³ will be conveyed and be retained at the proposed underground infiltration gallery and 7.67 m³ will be used for irrigation purposes and should be utilized within 72 hours.

Parkland Dedication

The parkland dedication area is all landscape, thus it meets the water balance requirement.

5.2.2. Quantity Controls

Using the City's intensity-duration-frequency (IDF) data, modified rational method calculations were undertaken to determine the maximum storage required during each storm event. Results for the 2, 5 and 100-year storm events are provided in **Table 5-4**. The detailed post-development quantity control calculations are provided in **Appendix C.**

Site	Storm Event	Target Flow (L/s)	Required Storage Volume (m³)	Maximum Controlled Release Rate Achieved (L/s)	Total Site Release Rate (L/s)
2-year			36.7	20.1	30.8
48 Grenoble Drive	5-year	71.3	57.8	25.0	41.1
	100-year		122.5	30.5	61.0

Table 5-4 – Post-development Quantity Control as per City Requirements

As shown in **Table 5-4**, post-development flows from the development and Parkland Dedication will be controlled to a target flow of 71.3 L/s, in a way that the storm sewer network along Grenoble Drive will not be adversely affected during post-development conditions. The required on-site storage is accommodated by combination of green roof application and an underground storage tank located at P2 level.

Storm water from the driveway will be gravity driven towards the treatment device (Stormfilter SFPD 0608), before being discharged into the underground storage tank. Please refer to engineering drawing **SS-01** (submitted separately).

The Green Roof make up (Drainage Area A1 Post), considered for this development is **ZinCo Extensive Green Roof with Floradrain FD25** (details can be found in **Appendix C**) with a manufacturer's claim of water retention of 25.00 L/m².

The stormwater flow released from the green roof, the rooftops, walkways and landscaped surfaces (Drainage Areas A1 Post, A2 Post and A4 Post), will be gravity driven into the proposed underground storage tank at P2 level. The 100-year storm yielded an underground storage tank of 63.3m² controlled by a 100 mm orifice tube with a maximum release rate of 38.5 L/s, achieved. Detailed orifice tube calculations are provided in Appendix C. The uncontrolled flow from the Parkland Dedication and the hardscape area is 30.5 L/s for the 100-year event. Therefore, the total site release rate will be 69.0 L/s which is less than the target flow of 71.3 L/s. Consequently, the proposed SWM plan in conjunction with the proposed grading and servicing, retains enough runoff volume to reduce the post-development peak flows for each storm event to the required target flow for the proposed residential development.

5.2.3. Underground Storage Tank

An underground storage tank is proposed to meet the quantity control requirements set forth by the City's WWFMG. Stormwater from the green roof (A1 Post), rooftop/terraces/walkways (A2 Post), driveway area (A3 Post) and landscaped area (A4 Post) and will be gravity driven into the underground storage tank. The Drainage Area A3 Post will be driven to the treatment device before being discharged into the underground storage tank (refer to engineering drawing SS-01, submitted separately).

The storage tank, located at P2 basement level (refer to engineering drawing SS-01, submitted separately), will have a storage capacity of at least 115.3 m3 with a minimum storage depth of 1.82 m and during the 100-year storm, will outlet through a 100mm diameter orifice tube, ultimately reaching the City's infrastructure through gravity.

5.2.4. Quality Controls

For MECP Enhanced Level protection, the removal of 80% total suspended solids (TSS) is required. Stormwater, discharged from the areas that will not be polluted by car waste, is considered "clean" and will be driven to the underground tank. Car waste polluted water from the driveway, captured by the proposed area drain #4, #5 and #6, will be driven into the manufactured treatment device (Stormfilter SFPD 0608 with two (2) 12in cartridges), before being discharged into the underground storage tank. Therefore, polluted stormwater will be "cleaned" prior being discharged into the City's storm sewer network. The detailed quality control calculations and Proposed manufactured treatment device can be found in **Appendix C**. A summary of the site quality control is included in **Table 5-5** below.

Drainage Area	Drainage Area (ha)	Overall TSS Removal	Additional Quality Control Required
Rooftop / Terraces / Green Roof/ Walkways / Hardscape Areas	0.563	78%	Inherent
Driveway / Landscape Areas	0.014	2%	Stormfilter SFPD 0608
Total	0.577	80%	

Table 5-5 - Site TSS Removal

5.3. Proposed Storm Connection

The storm sewer system for the residential development will be designed to meet the City's requirements and discharge into the existing 300 mm diameter storm on Grenoble Drive via a 200 mm diameter storm lateral connection with a minimum grade of 2.00% (or equivalent design). In order to support the proposed development a part of the sewer segment (from MH 33A to MH 38) along Grenoble Drive will be replaced. The engineering drawing **SS-01** (submitted separately), indicates the stormwater service connection.

6.0 Sanitary Drainage System

6.1. Existing Sanitary Drainage System

The existing site is currently occupied by one (1) residential building. According to available records, there is one (1) sanitary sewer, abutting the subject property. More specifically there is:

• A 450 mm diameter sanitary sewer on the west side of the subject property and within the parkland area, flowing south towards Grenoble Drive.

Upon review of the information provided by the City, the sanitary network abutting our property eventually discharges into the trunk sewer between Don Mills Road and Don Valley Parkway.

6.2. Existing and Proposed Sanitary Flows

The sanitary flow generated by the proposed development at 48 Grenoble Drive was compared to the existing flow in order to quantify the net increase in the storm sewer.

Using the design criteria outlined in **Section 4.3** and existing site information, the sanitary discharge flow from the existing residential building is estimated at 4.19 L/s. Detailed calculations can be found in **Appendix D**.

Using the design criteria outlined in **Section 4.3** and the proposed development statistics, the proposed development will discharge 19.36 L/s into the City's infrastructure.

The capacity of the existing sanitary sewer network along Grenoble Drive to accommodate the post-development sanitary flow, will be discussed under **Section 8.0** of this report.

6.3. Proposed Sanitary Connection

In order to support the proposed development a sanitary sewer extension to the existing sanitary sewer system is required. Therefore it's proposed a new 450 mm diameter sanitary sewer with a minimum grade of 0.5% along Grenoble Drive flowing West.

Three (3) separate 200mm lateral connections will be provided for the proposed development: one for the East Tower; one for the Podium; and one for the West Tower.

7.0 Groundwater

According to the "Geotechnical Engineering Report" prepared by 'Grounded Engineering Inc.' dated March 11th, 2022 and to the "Hydrogeological Review Report" prepared by Grounded Engineering Inc.', dated March 10th, 2022, the stabilized ground water level is at an elevation of approximately 117.00 masl.

The results of groundwater sampling on site, reveal that groundwater exceeds the City's limits of total suspended solids, cyanide, BOD and manganese for discharging into the storm sewer network, however is within the City's limits for discharging into the sanitary and combined sewer network. The results of the Hydrogeological review report can be found in **Appendix B.**

7.1. Long Term Dewatering

The proposed development will be serviced by four (4) basement levels (lowest basement slab elevation at 114.00 masl), therefore it is anticipated that the proposed underground construction will be partially submerged under the existing groundwater table. Following that fact, the proposed underground construction is proposed to be water-tight.

7.2. Short Term Dewatering

Site dewatering during construction, under the worst case scenario, is anticipated at 206,000 L/day, which translates to approximately 2.38 L/s. Following the fact that the existing network along Grenoble Drive can accommodate the proposed total net flow of 15.17 L/s under post-development conditions, it is anticipated that it will be capable to accommodate the groundwater discharge during construction Groundwater will be discharged into the 450mm diameter sanitary sewer along **Grenoble Drive**.

8.0 Sanitary Sewer Capacity Analysis

The Capacity Sewer Analysis, prepared by Lithos Group Inc., dated March, 2022, has been provided in order to identify the impact of the proposed development into the existing sanitary network. Sanitary flow from the proposed development will be discharged into the City's sanitary network. A Downstream Sanitary Sewer Capacity Analysis has been conducted using pre- and post-development flows and can be found in **Appendix D**.

According to the Capacity Sewer Analysis, eight (8) model scenarios were developed to access the sewer condition. Scenarios and findings are listed below:

Scenario 1: Sewer capacity under existing dry weather conditions (DWF Existing Conditions).

- Scenario 2: Sewer capacity under post-development dry weather conditions (DWF Proposed Conditions).
- Scenario 3: Sewer capacity under existing wet weather conditions (WWF Existing Conditions).
- Scenario 4: Sewer capacity under post-development wet weather conditions (WWF Proposed Conditions).
- Scenario 5: Hydraulic Grade Line Analysis under pre-development dry weather conditions (DWF Existing Conditions).
- Scenario 6: Hydraulic Grade Line Analysis under post-development dry weather conditions (DWF Proposed Conditions).
- Scenario 7: Hydraulic Grade Line Analysis under pre-development wet weather conditions (WWF Existing Conditions).
- Scenario 8: Hydraulic Grade Line Analysis under post-development wet weather conditions (WWF Proposed Conditions).

Sanitary sewer analysis has been prepared up to the outlet of the sewer segment leading to the trunk sewer, in order to evaluate the impact of the proposed development to the existing sanitary network. In addition, the Downstream Sanitary Capacity Analysis, includes all updates to the model to reflect changes (i.e., sewer construction), since the model was initially prepared, as well as new buildings, sites where zoning has been completed and where applications are currently in progress.

8.1. Capacity Assessment Results

The external analysis conducted by Lithos Group Inc., shows that under **pre-development Dry Weather Conditions**, the capacity of the existing sanitary sewer network downstream of the site does not carry more than 38.3% (**Scenario 1**). **Under post-development Dry Weather Conditions** (**Scenario 2**), the capacity of the existing network up to the Trunk sewer reaches 43.9%.

Furthermore, the external analysis regarding **pre and post-development Wet Weather Conditions** (**Scenario 3** and **Scenario 4**) shows that the decrease to the capacity of the downstream sanitary sewer segments are not more than 6.2% (from 65.2% to 71.4%). Consequently, the proposed development will not adversely affect the functionality of the downstream sanitary sewer system.

In addition, according to the Hydraulic Grade Line Analysis conducted by Lithos Group Inc., under **existing and proposed development Dry-Weather conditions** (Scenario 5 and Scenario 6), the system operates under free flow conditions and there is no surcharge to the sanitary network up to the trunk sewer. We have been leaded to the aforementioned conclusion taking into account that the freeboard varies between 2.51 m and 7.62 m under pre development conditions and between 2.50 m and 7.61 m under post development conditions.

Finally, under existing and proposed Wet-Weather Conditions (Scenario 7 and 8), the Hydraulic Grade Line Analysis indicated that the system is not experiencing any surcharge at downstream segments. The sanitary sewer network downstream of the site has a minimum freeboard equal to $2.41 \, \text{m} > 1.8 \, \text{m}$ in the worst case scenario of proposed Wet Weather Conditions.

The Downstream Sanitary Capacity Analysis Report can be found in Appendix D.

9.0 Water Supply System

9.1. Existing System

Based on plans provided by the City, the existing watermain system consists of the following waterlines:

- A 400 mm diameter watermain on the south side of Deauville Lane; and
- A 400 mm diameter watermain on the west side of Grenoble Drive.

Upon receipt of the fire hydrant test results in spring of 2022, an addendum to this report will be prepared and submitted to the City on the Clients behalf.

9.2. Proposed Water Supply Requirements

The estimated water consumption was calculated based on the occupancy rates shown on Table 4-2, based on the City's watermain design criteria, revised in November 2009. Calculations for the east tower, podium and west tower, were conducted to confirm that can be supported by the existing water servicing infrastructure.

Residential Development

West Tower

It is anticipated that an average consumption of approximately 1.78L/s (153,710L/day), a maximum daily consumption of 2.67L/s (230,565L/day) and a peak hourly demand of 4.00L/s (14,410L/hr) will be required to service this development with domestic water. Detailed calculations are found in **Appendix E**.

The fire flow requirements we estimated using the method prescribed by the Fire Underwriters Survey (FUS) be undertaken to assess the minimum requirement for fire suppression. The fire flow calculations is normally conducted for the largest storey, by area, and for the two immediately adjacent storey.

As a result to the above mentioned method, we have selected Levels 1, 2 and 3 to determine the fire flow demand. **Table 9.1** illustrates the input parameters used for the FUS calculations. According to our calculations, a minimum fire suppression flow of approximately 102.00 L/s (1,617 USGPM) will be required. Refer to detailed calculations found in **Appendix E**.

Table 9.1 – Fire Flow Input Parameters (West Tower)

							Separation	n Distance	
Parameter	Frame used for Building	Combustibility of Contents	Presence of Sprinklers	North	West	South	East		
Value according to FUS options	ordinary construction	limited combustible occupancy	Yes	3.1m to 10m	> 45m	> 45m	> 45m		
Surcharge/reduction from base flow	1.0	15%	30%	20%	0%	0%	0%		

East Tower

It is anticipated that an average consumption of approximately 1.63L/s (140,600 L/day), a maximum daily consumption of 2.44 L/s (210,900L/day) and a peak hourly demand of 3.66L/s (13,181L/hr) will be required to service this development with domestic water. Detailed calculations are found in **Appendix E**.

The fire flow requirements were estimated using the method prescribed by the Fire Underwriters Survey (FUS) be undertaken to assess the minimum requirement for fire suppression. The fire flow calculations is normally conducted for the largest storey, by area, and for the two immediately adjacent storey.

As a result to the above mentioned method, we have selected Levels 1, 2 and 3 to determine the fire flow demand. Table 9-2 below illustrates the input parameters used for the FUS calculations. According to our calculations, a minimum fire suppression flow of approximately 89.25 L/s (1,415 USGPM) will be required. Refer to detailed calculations found in Appendix E.

	Frame used Com	Combustibility	Presence	Separation Distance			
Parameter	for Building	of Contents	of Sprinklers	North	East	South	West
Value according to FUS options	ordinary construction	limited combustible occupancy	Yes	3.1m to 10m	> 45m	> 45m	> 45m
Surcharge/reduction from base flow	1.0	15%	30%	20%	0%	0%	0%

Table 9-2 – Fire Flow Input Parameters (East Tower)

Podium

It is anticipated that an average consumption of approximately 0.43 L/s (36,860L/day), a maximum daily consumption of 0.64L/s (55,290L/day) and a peak hourly demand of 0.96 L/s (3,456L/hr) will be required to service this development with domestic water. Detailed calculations are found in Appendix E.

The fire flow requirements were estimated using the method prescribed by the Fire Underwriters Survey (FUS) be undertaken to assess the minimum requirement for fire suppression. The fire flow calculations is normally conducted for the largest storey, by area, and for the two immediately adjacent storey.

As a result to the above mentioned method, we have selected Levels 3, 4 and 5 to determine the fire flow demand. Table 9-3 below illustrates the input parameters used for the FUS calculations. According to our calculations, a minimum fire suppression flow of approximately 191.25 L/s (3,032 USGPM) will be required. Refer to detailed calculations found in Appendix E.

Table	9-3 –	Fire Flow In	put Parame	ters (Podium)
_			Presence	Sepa

	Eramo usod	Combustibility		Frame used Combustibility Presence Separation Distance			n Distance	
Parameter	for Building	of Contents	of Sprinklers	North	East	South	West	
Value according to FUS options	ordinary construction	limited combustible occupancy	Yes	3.1m to 10m	> 45m	> 45m	> 45m	
Surcharge/reduction from base flow	1.0	15%	30%	20%	0%	0%	20%	

Following the fire hydrant test, an addendum to this report will be prepared and submitted to the City on the Clients' behalf, to confirm that the existing network can support the proposed development.

9.3. Proposed Watermain Connection

According to the Ontario Building Code (OBC), for each building greater than 84m in height at least three (3) fire lines are required. Three (3) separate domestic connections will be provided for the proposed development: one for the South Tower; one for the Podium and one for the North Tower. The connections will be as follows:

East Tower

<u>Residential-Use of the high-rise building:</u> one (1) 200 mm diameter fire split to a 150 mm domestic water will connect on the on the 400 mm watermain sewer on Deauville Lane and one (1) 200 mm diameter fire will connect on the 400 mm watermain sewer on Grenoble Drive;

Podium

<u>Residential-Use of the Podium:</u> one (1) 150 mm diameter fire split to a 100 mm domestic water will connect on the 4000 mm watermain on Deauville Lane;

West Tower

<u>Residential-Use of the high-rise building:</u> one (1) 200 mm diameter fire split to a 150 mm domestic water will connect on the 400 mm watermain on Grenoble Drive and one (1) 200 mm diameter fire will connect on the 400 mm watermain sewer on Deauville Lane.

According to City's standard drawing T-1104.02-3, fire and domestic connections on Grenoble Drive and Deauville Lane will be split two (2) meters away from the property line and valve and boxes will be installed on each service at the property line. For details refer to the engineering drawing **SS-01** (submitted separately).

10.0 Site Grading

10.1. Existing Grades

The site drains mainly towards Grenoble Drive and Deauville Lane.

10.2. Proposed Grades

The proposed grades will improve the existing drainage patterns wherever feasible. Grades will be maintained along property lines to the extent practical. Furthermore, under post-development conditions, there will be no surface drainage towards the Parkland Dedication portion of the site from the residential development.

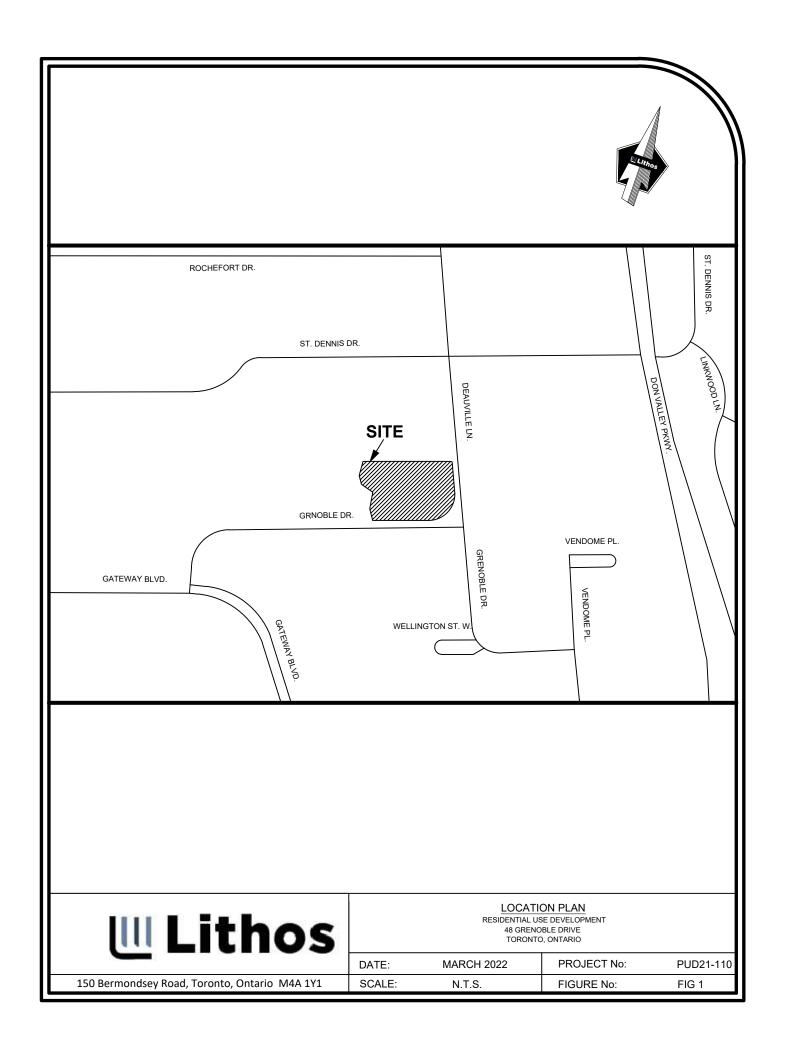
Therefore, the owner shall be responsible to provide flood protection or a safe overland flow route for the proposed development without causing damage to the proposed and adjacent public and private properties.

11.0 Conclusions and Recommendations

Based on our investigations, we conclude the following:

Storm Drainage

The site stormwater discharge will be controlled to the 2-year pre-development flow and will be connected to the proposed 300mm diameter storm sewer on Grenoble Drive. In order to attain the target flows and meet the City's Wet Weather Flow Management Guidelines (WWFMG), quantity controls will be utilized and up to 115.3 m³ of on-site storage will be required for the proposed mixed-use development. The stormwater management (SWM) system will be designed to provide enhanced level (Level 1) protection as specified by the Ministry of Environment, Conversation and Parks (MECP). Quality control will be provided for the subject site for a minimum total suspended solids (TSS) removal of 80%.


Sanitary Sewers

Three (3) separate connections will be provided for the proposed development: one for the East Tower; one for the Podium; and one for the West Tower. All sanitary connections will lead to a proposed 450 mm diameter sanitary sewer on Grenoble Drive flowing West. The additional net discharge flow from the entire property (proposed and existing development), is anticipated at approximately 15.17 L/s.

Under Dry and Wet-Weather, post-development conditions, the maximum downstream capacity of the sanitary sewer network will not be exceeded, and the freeboard distance will be well over 1.8m. Therefore, the property under proposed conditions will not adversely affect flow conditions downstream and the existing infrastructure will be capable to support the proposed development.

Water Supply

Five (5) separate fire lines will be provided for the proposed development: two (2) for the East Tower; two (2) for the West Tower; and one for the Podium according to the Ontario Building Code (OBC), to support the proposed development's sprinkler system. In addition, three (3) of the above noted fire lines will split into domestic connections that will service the proposed development. Water supply for the site will be from the existing 400 mm diameter watermain on the East side of Deauville Lane and the existing 400 mm diameter watermain on the North side of Grenoble Drive. Upon receipt of the fire hydrant test results in spring of 2022, an addendum to this report will be prepared and submitted to the City on the "Client's" behalf.

AERIAL PLAN

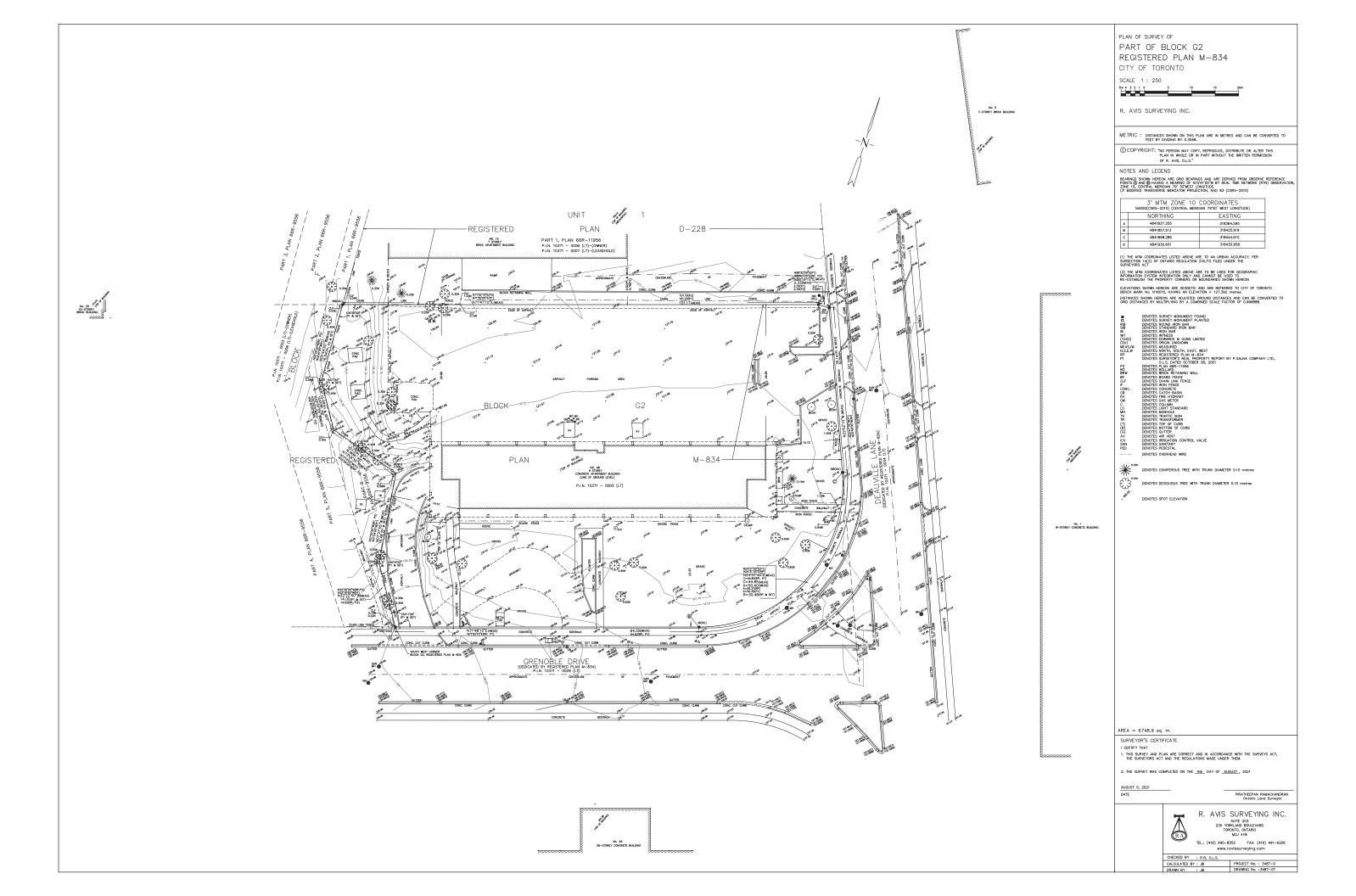
RESIDENTIAL USE DEVELOPMENT 48 GRENOBLE DRIVE TORONTO, ONTARIO

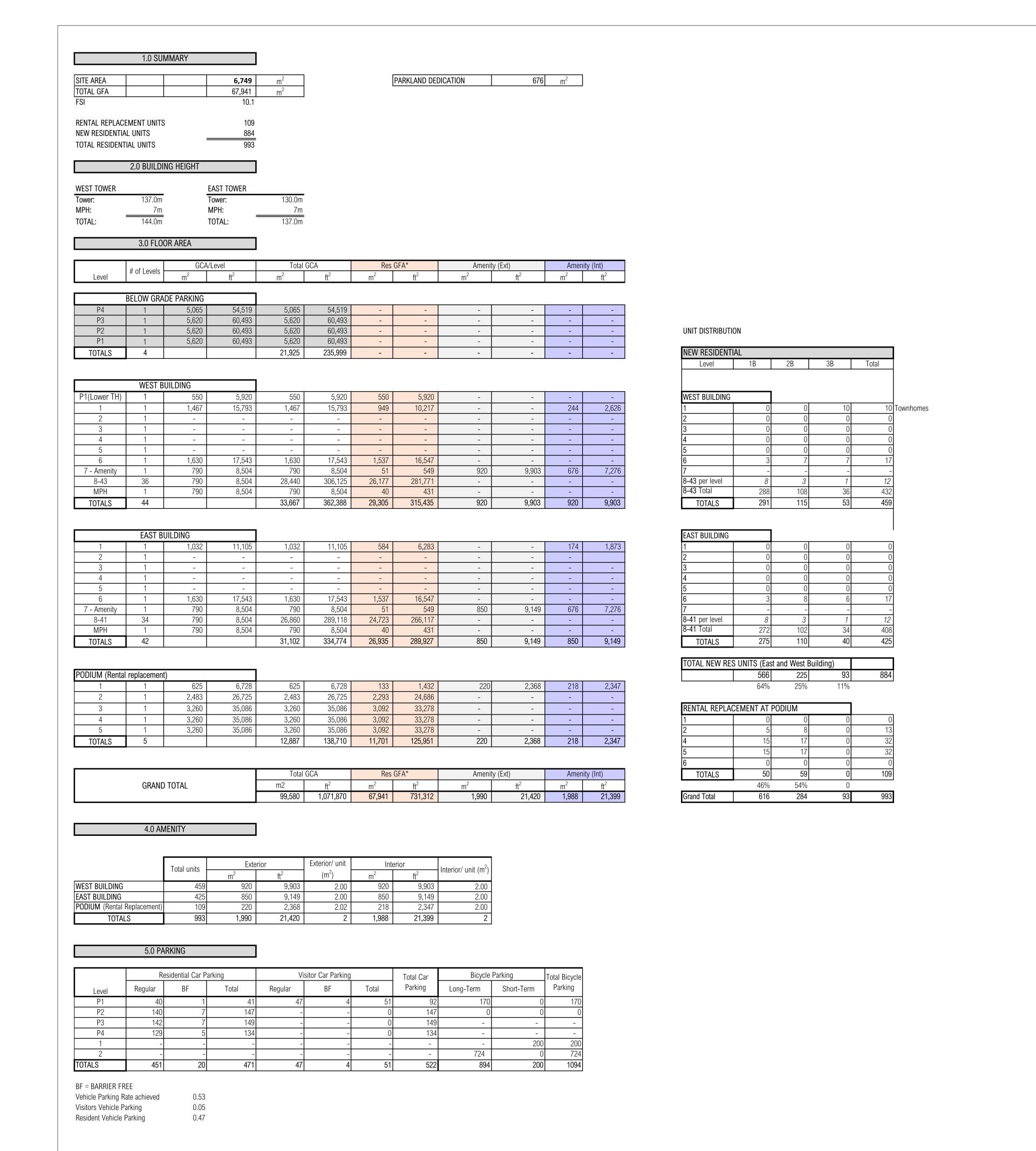
DATE:	MARCH 2022	PROJECT No:	PUD21-110
SCALE:	N.T.S.	FIGURE No:	FIG 2
	COALE:	SCALE: N.T.C	

Appendix A

Site Photographs

North East Corner of Property along Deauville Lane – Facing South West


South West Corner along Grenoble Drive – Facing North East

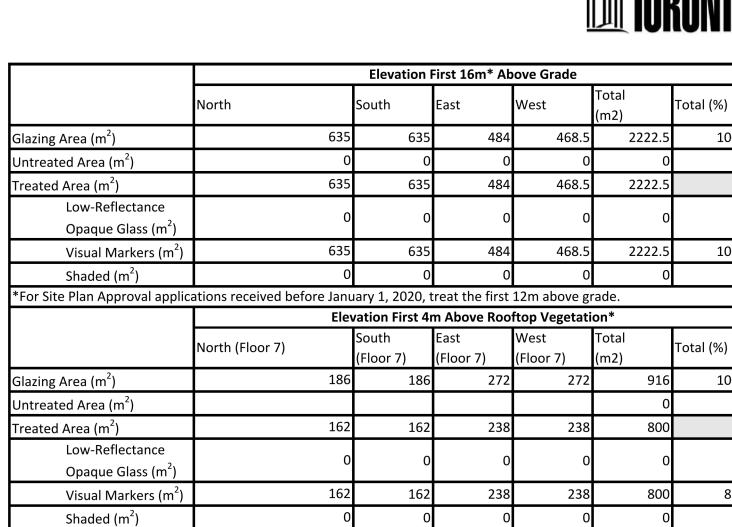


South East Corner along Grenoble Drive – Facing North West

Appendix B

Background Information

Green Roof Statistics


The Green Roof Statistics Template is required to be submitted for Site Plan Control Applications where a green roof is required under the Toronto Municipal Code Chapter 492, Green Roofs. Complete the table below and copy it directly onto the Roof Plan submitted as part of any Site Plan Control Application requiring a green roof in accordance with the Bylaw. Refer to Section § 492-1 of the Municipal Code for a complete list of defined terms, and greater clarity and certainty regarding the intent and application of the terms included in the template. The Toronto Municipal Code Chapter 492, Green Roofs can be found online at: http://www.toronto.ca/legdocs/municode/1184_492.pdf

Green Roof Statistics

		Proposed
Gross Floor Area, as defined in Green Roof Bylaw (m ²)		82,337
Total Roof Area (m ²)		3247
Area of Residential Private Terraces (m ²)		0
Rooftop Outdoor Amenity Space, if in a Residential Building (n	n²)	1735
Area of Renewable Energy Devices (m ²)		
Tower (s)Roof Area with floor plate less than 750 m ²		
Total Available Roof Space (m ²)		1512
Green Roof Coverage	Required	Proposed
Coverage of Available Roof Space (m ²)	907	948
Coverage of Available Roof Space (%)	60%	63%

Bird-Friendly Design Statistics

Building Window : Wall Ratio

50:50:00

Include this section only when applicable and provide relevant floor numbers for reference

ROCHEFORT DR

Statistics Template - Toronto Green Standard Version 3.0
Mid to High Rise Residential and all
•
New Non-Residential Development

The Toronto Green Standard Version 3.0 Statistics Template is submitted with Site Plan Control Applications and stand alone Zoning Bylaw Amendment applications. Complete the table and copy it directly onto the Site Plan submitted as part of the application. For Zoning Bylaw Amendment applications: complete General Project Description and Section 1.

For Site Plan Control applications: complete General Project Description, Section 1 and Section 2.

For further information, please visit www.toronto.ca/greendevelopment **General Project Description** Proposed Total Gross Floor Area

L Total Gloss Floor Alea	07,541
Breakdown of project components (m²)	
Residential	67,941
Retail	0
Commercial	0
Industrial	0
Institutional/Other	0

Section 1: For Stand Alone Zoning Bylaw Amendment Applications and Site Plan Control Applications

Automobile Infrastructure	Required	Proposed	Proposed %
Number of Parking Spaces	51	522	>100%
Number of parking spaces dedicated for priority LEV parking		0	
Number of parking spaces with EVSE		484	100% for Residential+25% for Visito
Cycling Infrastructure	Required	Proposed	Proposed %
Cycling Infrastructure Number of long-term bicycle parking spaces (residential)	Required 894	Proposed 894	Proposed %
	·	·	·
Number of long-term bicycle parking spaces (residential)	·	894	

Number of parking spaces dedicated for priority LEV parking		0	
Number of parking spaces with EVSE		484	100% for Residential+25% for Visitors
Cycling Infrastructure	Required	Proposed	Proposed %
Number of long-term bicycle parking spaces (residential)	894	894	100
Number of long-term bicycle parking spaces (all other uses)	0	0	
Number of long-term bicycle parking (all uses) located on:			
a) first storey of building		0	
b) second storey of building		724	
c) first level below-ground		170	
d) second level below-ground		0	
e) other levels below-ground		0	

Statistics Template - Toronto Green Standard Version 3.0 Mid to High Rise Residential and all

New N	Ion-Resid	ential Dev	<i>r</i> elopment
Cycling Infrastructure	Required	Proposed	Proposed %
Number of short-term bicycle parking spaces (residential)	200	200	100
Number of short-term bicycle parking spaces (all other uses)	0	0	
Number of male shower and change facilities (non-residential)	0	0	
Number of female shower and change facilities (non-residential)	0	0	
Tree Planting & Soil Volume	Required	Proposed	Proposed %
Total Soil Volume (40% of the site area \div 66 m ² x 30 m ³).	1105	1440	130%

Total soll volume (40% of the site area : 60 m x 50 m).	1103	1440	130 /0
Section 2: For Site Plan Control Applica	ations		
Cycling Infrastructure	Required	Proposed	Proposed %
Number of short-term bicycle parking spaces (all uses) at-grade or on first level below grade	200	200	100
UHI Non-roof Hardscape	Required	Proposed	Proposed %
Total non-roof hardscape area (m²)		2158	
Total non-roof hardscape area treated for Urban Heat Island (minimum 50%) (m²)	1080	1080	100%
Area of non-roof hardscape treated with: (indicate m²)			100%
a) high-albedo surface material	1080	1080	
b) open-grid pavement		n/a	
c) shade from tree canopy		n/a	
d) shade from high-albedo structures		n/a	
e) shade from energy generation structures		n/a	
Percentage of required car parking spaces under cover (minimum 75%)(non-residential only)		n/a	
Green & Cool Roofs	Required	Proposed	Proposed %
Available Roof Space (m²)	-	1512	-
Available Roof Space provided as Green Roof (m²)	907	948	104%

Available Roof Space provided as Cool Roof (m²)

Available Roof Space provided as Solar Panels (m²)

Statistics Template - Toronto Green Standard Version 3.0 Mid to High Rise Residential and all

Water Efficiency	Required	Proposed	Proposed %
Total landscaped site area (m²)		958	
Landscaped site area planted with drought-tolerant plants (minimum 50%) (m² and %) (if applicable)	479	479	100%
Tree Planting Areas & Soil Volume	Required	Proposed	Proposed %
Total site area (m²)	n/a	6073	n/a
Total Soil Volume (40% of the site area ÷ 66 m²x 30 m³)	1105	1440	130%
Total number of planting areas (minimum of 30m³ soil)	n/a	6	n/a
Total number of trees planted	n/a	41	n/a
Number of surface parking spaces (if applicable)	n/a	n/a	n/a
Number of shade trees located in surface parking area interior (minimum 1 tree for 5 parking spaces)	n/a	n/a	n/a
Native and Pollinator Supportive Species	Required	Proposed	Proposed %
Total number of plants		15	
Total number of native plants and % of total plants (min.50%)	7.5	2	15%
Bird Friendly Glazing	Required	Proposed	Proposed %
Total area of glazing of all elevations within 12m*above grade (including glass balcony railings)		2222.5	
Total area of treated glazing (minimum 85% of total area of glazing within 12m*above grade) (m²)		2222.5	100%
Percentage of glazing within 12m*above grade treated with:			
a) Low reflectance opaque materials		0	
		2222.5	100%
b) Visual markers			

41-STOREYS 7-11 ROCHEFORT DR 30-34 ST DENNIS DR 4-STOREYS ST DENNIS DR 12 ST DENNIS DR 9-STOREYS □3-STOREYS□ 31-35 ST DENNIS DR 29 ST DENNIS DR 12-STOREYS 2-STOREYS 5 DEAUVILLE LN 7-STOREYS (10 DEAUVILLE LN / 7-STOREYS 10 GRENOBLE DR 37-STOREYS 6-8 VENDOME PL 2 & 3-STOREYS 4 VENDOME PL GRENOBLE DR ===200 GATEWAY BLVD 5 GRENOBLE DR 5 DUFRESNE CRT ☐ 1-STOREY 29-STOREYS 9 GRENOBLE DR 2-STOREYS GATEWAY BLVD 58 GRENOBLE DR ___ 2-STOREYS ☐ 1 VENDOME PL 3-STOREYS

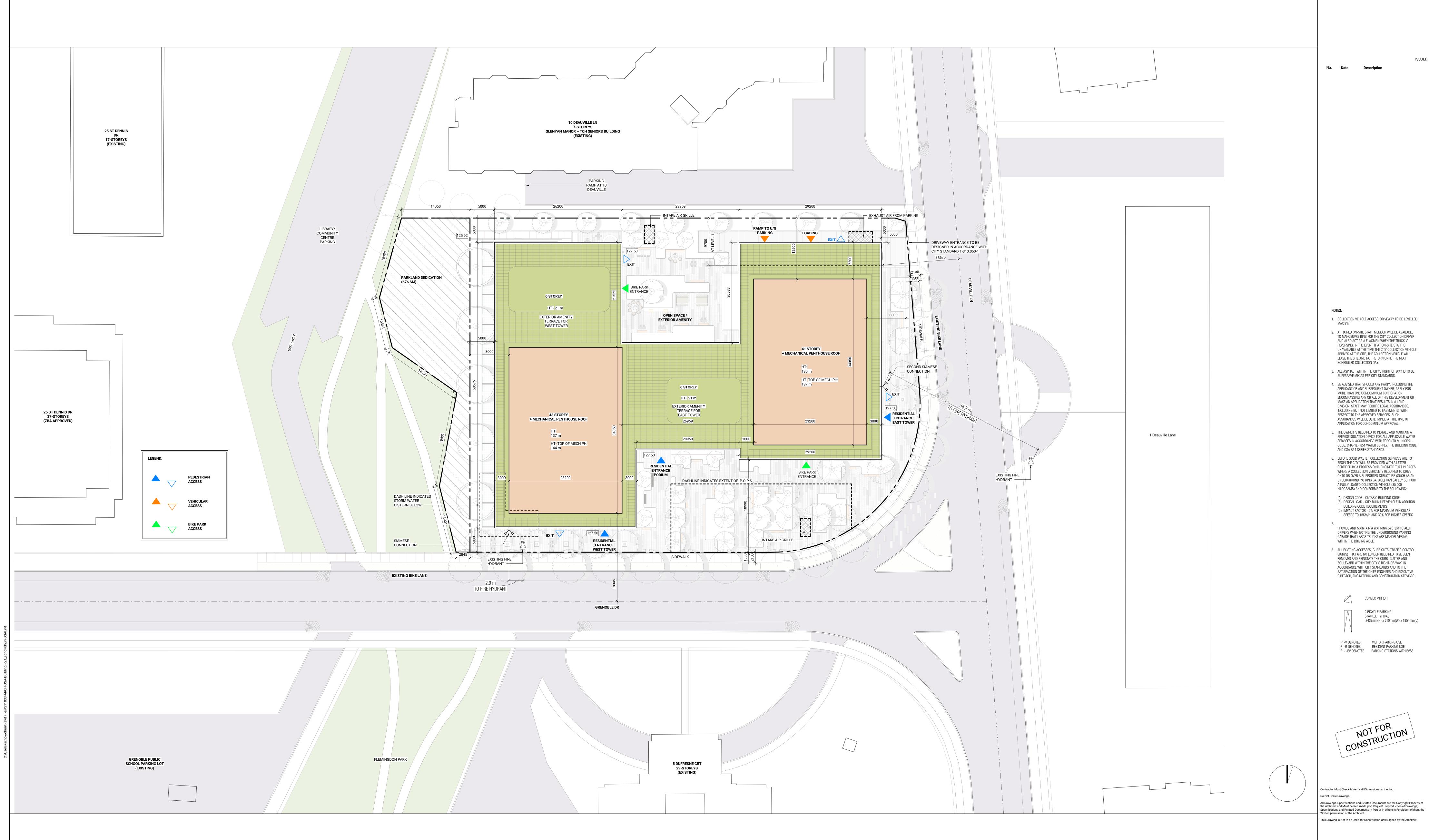
Contractor Must Check & Verify all Dimensions on the Job. Do Not Scale Drawings. All Drawings, Specifications and Related Documents are the Copyright Property of the Architect and Must be Returned Upon Request. Reproduction of Drawings, Specifications and Related Documents in Part or in Whole is Forbidden Without the

This Drawing is Not to be Used for Construction Until Signed by the Architect.

48 Grenoble Drive

CONTEXT PLAN, STATISTICS & TEMPLATES

Statistics Template - Toronto Green Standards v.3.0


11-0063 2018-05

Total number of residential units

Page 1 of 3

Context Plan

Written permission of the Architect.

1. COLLECTION VEHICLE ACCESS DRIVEWAY TO BE LEVELLED

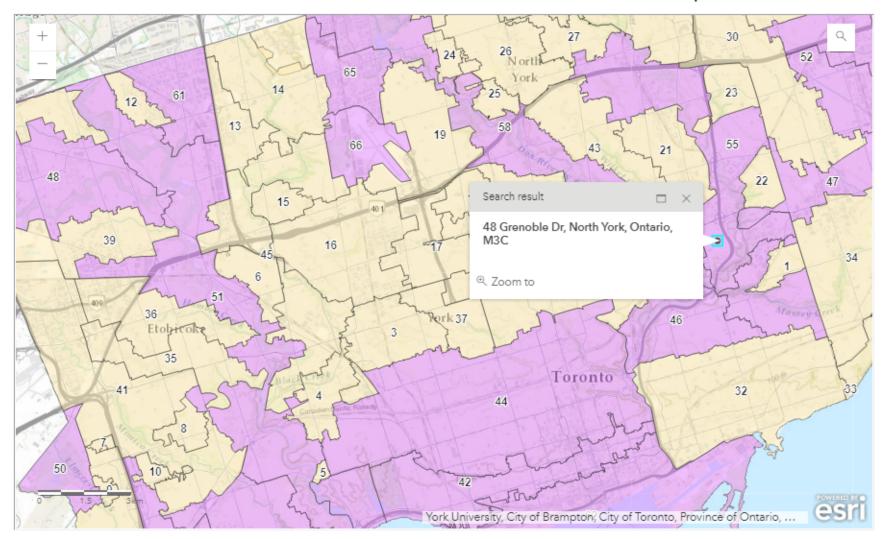
TO MANOEUVRE BINS FOR THE CITY COLLECTION DRIVER UNAVAILABLE AT THE TIME THE CITY COLLECTION VEHICLE

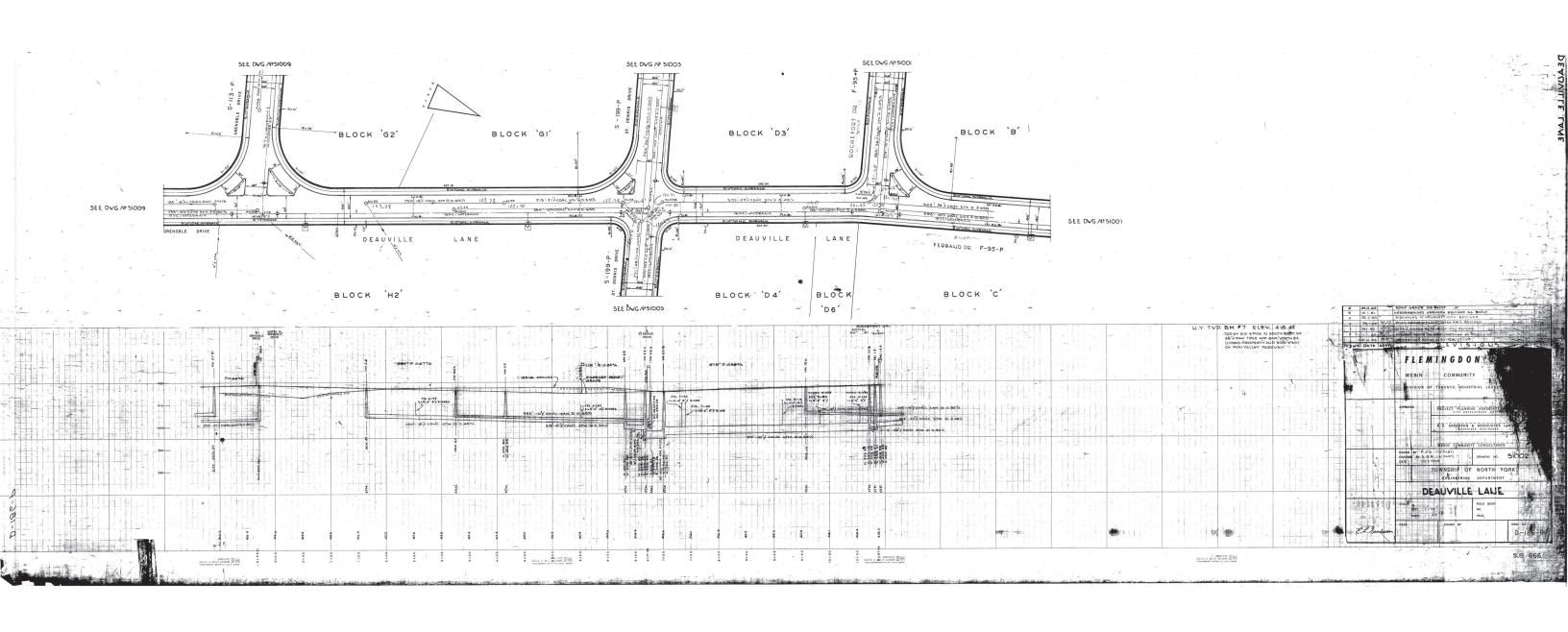
PREMISE ISOLATION DEVICE FOR ALL APPLICABLE WATER

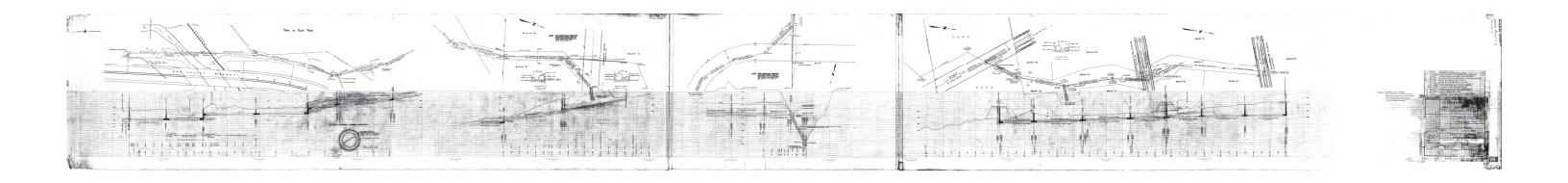
CERTIFIED BY A PROFESSIONAL ENGINEER THAT IN CASES ONTO OR OVER A SUPPORTED STRUCTURE (SUCH AS AN

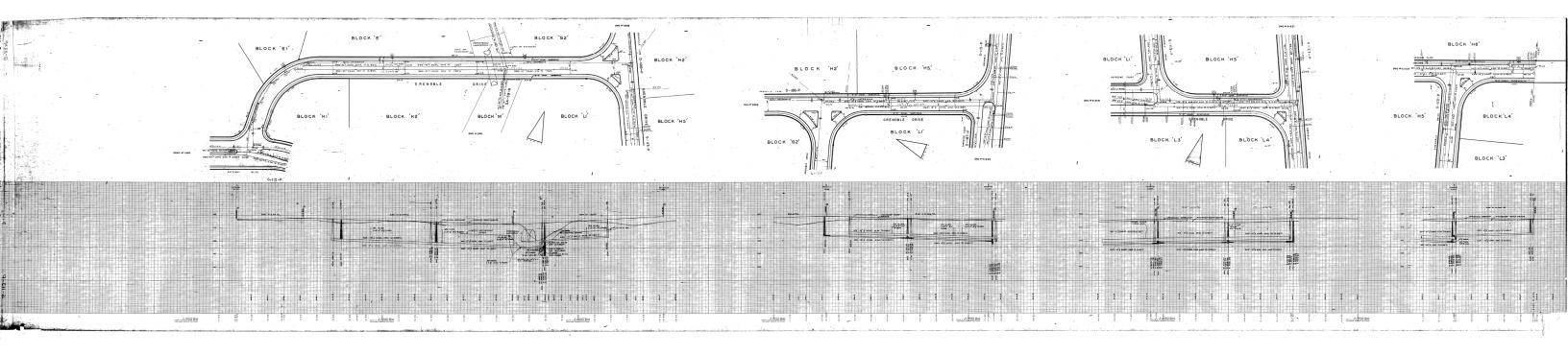
(A) DESIGN CODE - ONTARIO BUILDING CODE (B) DESIGN LOAD - CITY BULK LIFT VEHICLE IN ADDITION

DIRECTOR, ENGINEERING AND CONSTRUCTION SERVICES.

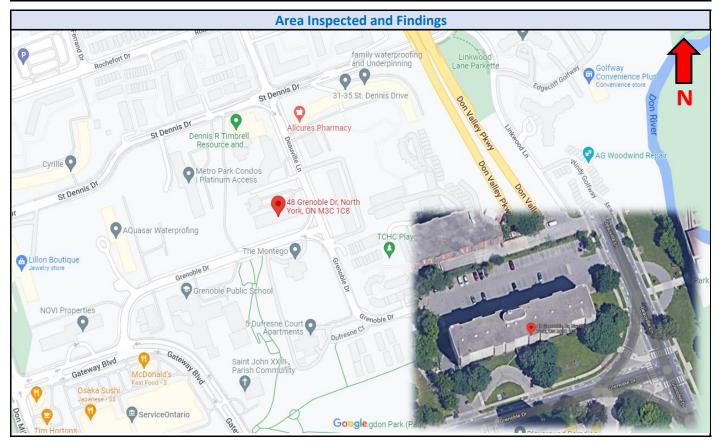

48 Grenoble Drive 211033


SITE PLAN


Map Legend


- Basement Flooding Study Completed
- Basement Flooding Study in Progress (started before 2019)
- Basement Flooding Study in Progress (started in 2019)

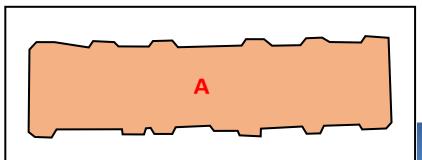
For more information enter an address in the search bar and/or click on the shaded area in the map



Pre-Development Site Investigation Report

General Information					
Date: March 08,2022		Report No. :R22-03-14-01			
Project No. :PUD21-110		Address :48 Grenoble Drive ,NY,ON			
Owner :Lifestyle Group of Co	ompanies	Region/ Municipality:Toront	:0		
	Torons				
	Transpo				
Time leaving the office :9 am	1	Distance from the office (KM	·		
Time on-site:9:30 am		Total Distance Travelled (KM	l) :6.6 Km		
Time leaving the site:11:45 a	am	Transportation Method:	Company's Vehicle		
Time on the office :12:00 pm	1		Own Vehicle		
Attendants					
	Name	Title	Contact Info.		
Inspector	Keyvan Vahedi	Senior Project Coordinator	437-776-4086		
Inspector	Matiur Rahman	Senior Project Inspector	416-750-7769		
Inspector	Surabhi Suresh	Project Coordinator	647-394-1527		
	Weather (Condition			
Sunny	Cold	Light Rain	Windy		
partly cloudy	Cool	Heavy Rain	Fogy		
Cloudy	Warm	Light Snow			
Temprature :-2°C	Hot	Heavy Snow			
Temprature : = 0		Ticavy snow			
	Existing Facilities	s at Project/Site			
The subject property is o	occupied by nine story reside	ential building .			




Ⅲ Lithos

Pre-Development Site Investigation Report

General Information	
Date: March 08,2022	Report No. :R22-03-14-01
Project No. :PUD21-110	Address :48 Grenoble Drive ,NY,ON
Owner :Lifestyle Group of Companies	Region/ Municipality:Toronto

Area Inspected and Findings

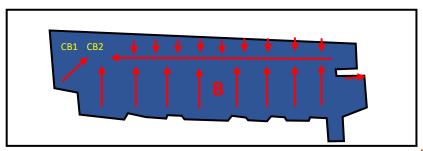
A-Roof Top

B-Outsite parking lot

C-Landscape area with grass fill

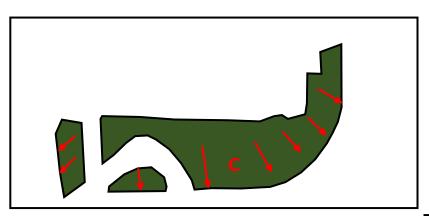
D-Asphalt pathway

E-Concrete walk way

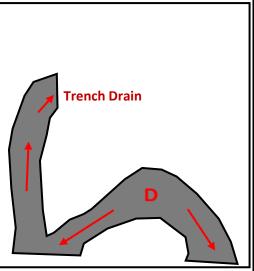

Pre-Development Site Investigation Report

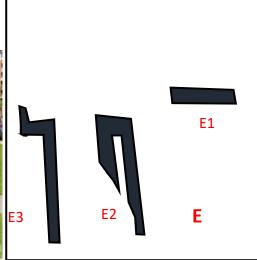
General Information	
Date: March 08,2022	Report No. :R22-03-14-01
Project No. :PUD21-110	Address: 48 Grenoble Drive, NY, ON
Owner :Lifestyle Group of Companies	Region/ Municipality:Toronto

Area Inspected and Findings


Lithos Pre-Development Site Investigation Report

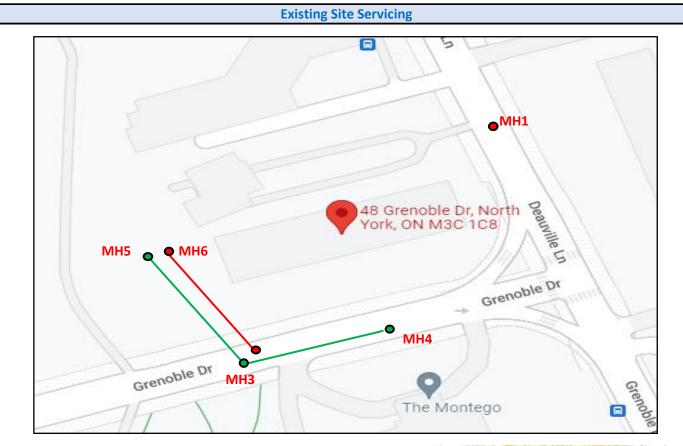
General Information	
Date: March 08,2022	Report No. :R22-03-14-01
Project No. :PUD21-110	Address: 48 Grenoble Drive, NY, ON
Owner :Lifestyle Group of Companies	Region/ Municipality:Toronto


Area Inspected and Findings


Lithos Pre-Development Site Investigation Report

General Information			
Date: March 08,2022 Report No. :R22-03-14-01			
Project No.:PUD21-110	Address :48 Grenoble Drive ,NY,ON		
Owner :Lifestyle Group of Companies	Region/ Municipality:Toronto		

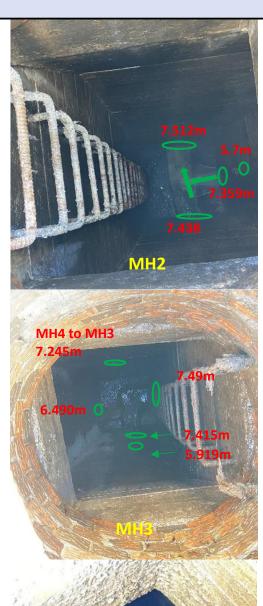
Area Inspected and Findings

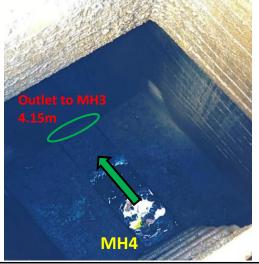


Pre-Development Site Investigation Report

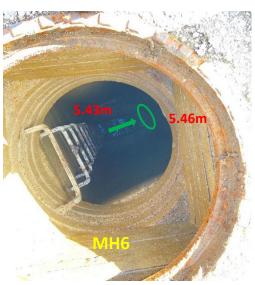
General Information		
Date: March 08,2022 Report No. :R22-03-14-01		
Project No. :PUD21-110 Address :48 Grenoble Drive ,NY,ON		
Owner :Lifestyle Group of Companies	Region/ Municipality:Toronto	

Lithos Pre-Development Site Investigation Report


General Information			
Date: March 08,2022 Report No. :R22-03-14-01			
Project No. :PUD21-110 Address :48 Grenoble Drive ,NY,ON			
Owner :Lifestyle Group of Companies	Region/ Municipality:Toronto		


Site Servicing

Lithos Pre-Development Site Investigation Report


General Information		
Date: March 08,2022 Report No. :R22-03-14-01		
Project No. :PUD21-110 Address :48 Grenoble Drive ,NY,ON		
Owner :Lifestyle Group of Companies	Region/ Municipality:Toronto	

Site Servicing

March 18, 2022

Attention:

Chief Engineer and Executive Director, Engineering and Construction Services c/o Manager, Development Engineering 55 John Street, 16th Floor Toronto, ON M5v 3C6

CC:

General Manager, Toronto Water c/o Manager, Environmental Monitoring and Protection Unit 30 Dee Ave, Toronto ON M9N 1S9

Re: 48 Grenoble Drive, Toronto, ON

Our Project No. 22.161

Dear Sir or Madam,

I, Anthony Mirvish, confirm that all buildings on the subject lands (48 Grenoble Drive) can be constructed water-tight below grade in a manner that will resist hydrostatic pressure without any necessity for Private Water Drainage System (subsurface drainage system) consisting of but not limited to weeping tile(s), foundation drain(s), private water collection sump(s), private water pump or any combination thereof for the disposal of private water on the surface of the ground or to a private sewer connection directly or indirectly or drainage system for disposal directly or indirectly in a municipal sewer.

Sincerely,

Honeycomb Group Inc.

Anthony Mirvish, P. Eng.

Principal

anthony.mirvish@honeycombaroup.ca

416-451-9806

Microbjo Properties Inc. c/o Tenblock 30 Soudan Avenue, Suite 200 Toronto, ON M4S 1V6

March 18, 2022

Attention: Chief Engineer and Executive Director, Engineering and Construction Services c/o Manager, Development Engineering
Metro Hall
55 John Street, 16th Floor
Toronto ON M5V 3C6

cc: General Manager, Toronto Water c/o Manager, Environmental Monitoring and Protection Unit 30 Dee Ave, Toronto ON M9N 1S9

Dear Sir or Madam,

I, Tenblock, confirm and undertake that I will construct and maintain all building(s) on the subject lands (48 Grenoble Drive) in a manner which shall be completely water-tight below grade and resistant to hydrostatic pressure without any necessity for Private Water Drainage System (subsurface drainage system) consisting of but not limited to weeping tile(s), foundation drain(s), private water collection sump(s), private water pump or any combination thereof for the disposal of private water on the surface of the ground or to a private sewer connection directly or indirectly or drainage system for disposal directly or indirectly in a municipal sewer.

Sincerely,

Tenblock

Matthew Kelling, Development Manager

Mullely

mkelling@tenblock.ca

I, Matthew Kelling, have the authority to bind the corporation.

Smith + Andersen

1100 – 100 Sheppard Ave. East, Toronto ON, M2N 6N5 416 487 8151 f 416 487 9104 smithandandersen.com

2022-03-15

Attention: Chief Engineer and Executive Director, Engineering and Construction Services c/o Manager, Development Engineering

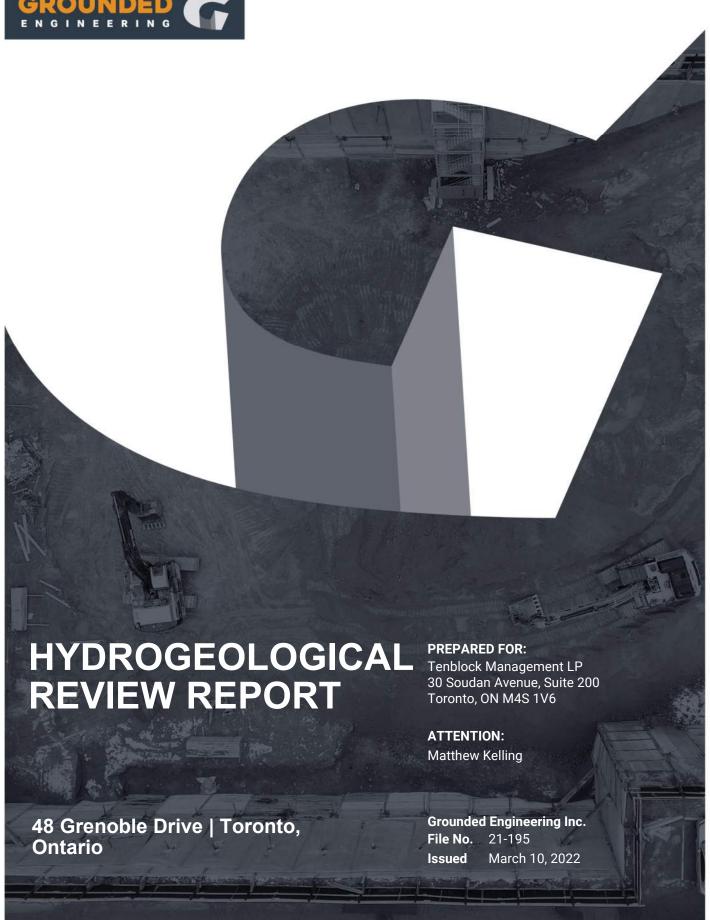
cc: General Manager, Toronto Water c/o Manager, Environmental Monitoring and Protection Unit 30 Dee Ave. Toronto ON M9N 1S9

Dear Sir or Madam,

I Vadim Vatoutine, confirm that all building(s) on the subject lands 48 Grenoble Dr. will be designed and constructed in a manner without Private Water Drainage System (subsurface drainage system) consisting of but not limited to weeping tile(s), foundation drain(s), private water collection sump(s), private water pump or any combination thereof for the disposal of private water on the surface of the ground or to a private sewer connection directly or indirectly or drainage system for disposal directly or indirectly in a municipal sewer. Underground structure(s) of the proposed building(s) will be built completely watertight without any direct or indirect connection to the City sewer for the discharge of groundwater (from a PWDS or floor drain or other infrastructure).

I understand that a Private Water Drainage System as an emergency back up system is not permitted, as part of this proposal.

Yours truly,


SMITH + ANDERSEN

Vadim Vatoutine, P.Eng. Senior Project Manager

21729.002.m. - 48 Grenoble Dr - GW Letter.docx

Executive Summary

Grounded Engineering Inc. (Grounded) was retained by Tenblock Management LP to conduct a Hydrogeological Review for the proposed redevelopment of 48 Grenoble Drive in Toronto, Ontario (site). The conclusions of the investigation are summarized as follows:

Development Information

Current Development						
Development Phase		Below Grade Levels				
	Above Grade		Lowest Finished Floor		Approximate	
·	Levels	Level #	Depth (m)	Elevation (masl)	Base of Footings (masl)	
1 Building	9	1	Unknown	Unknown	Unknown	

Proposed Development					
Development Phase		Below Grade Levels			
	Above Grade Levels	Level #	Lowest Finished Floor		Approximate
			Depth (m)	Elevation (masl)	Base of Footings (masl)
1 Building	Podium - 6				
(2 towers and	Tower A - 41	4	13.5	114.0	111.5
associated podium)	Tower B - 43				

Site Conditions

Stratigraphy				
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)
Fill	Aquifer	0.0 - 3.1	127.5 – 124.4	1.0 × 10 ^{-5***}
Gravelly Sands	Aquifer	3.1 - 6.9	124.4 – 120.6	3.6 × 10 ^{-6**}
Upper Glacial Till	Aquifer	6.9 – 20.2	120.6 - 107.3	5.5 × 10 ^{-8*}
Clayey Silt	Aquitard	20.2 - 26.3	107.3 - 101.2	1.6 × 10 ^{-8*}
Lower Sands	Aquifer	26.3 - 36.7	101.2 - 90.8	1.5 × 10 ^{-6*}
Lower Glacial Till	Aquifer	36.7 - 39.7	90.8 - 87.8	1.0 × 10 ^{-7***}

^{*}Indicates conductivity was calculated by Slug Test

^{***}Indicates conductivity was estimated using typical published values from Freeze and Cherry (1979)

Maximum Groundwater Elevation		
Monitoring Well ID	Depth Below Grade (m)	Elevation (masl)
BH1	13.1	113.8
BH2	15.2	111.9
ВН3	16.2	111.5
BH4	14.8	112.8
BH5	10.6	117.0

File No. 21-195 Page i

^{**}Indicates conductivity was estimated using grain size analysis

Maximum Groundwater Elevation		
BH6	17.5	107.7
BH7	30.2	96.9
BH8	30.7	96.8
BH9	30.4	97.0

Groundwater Quali	ty			
Sample ID	Sample Date	Sample Expiry Date	City of Toronto Storm Sewer Limits	City of Toronto Sanitary and Combined Sewer Limits
SW-UF-BH2	Feb 16, 2022	Aug 16, 2022	Exceeds	Meets

Groundwater Control

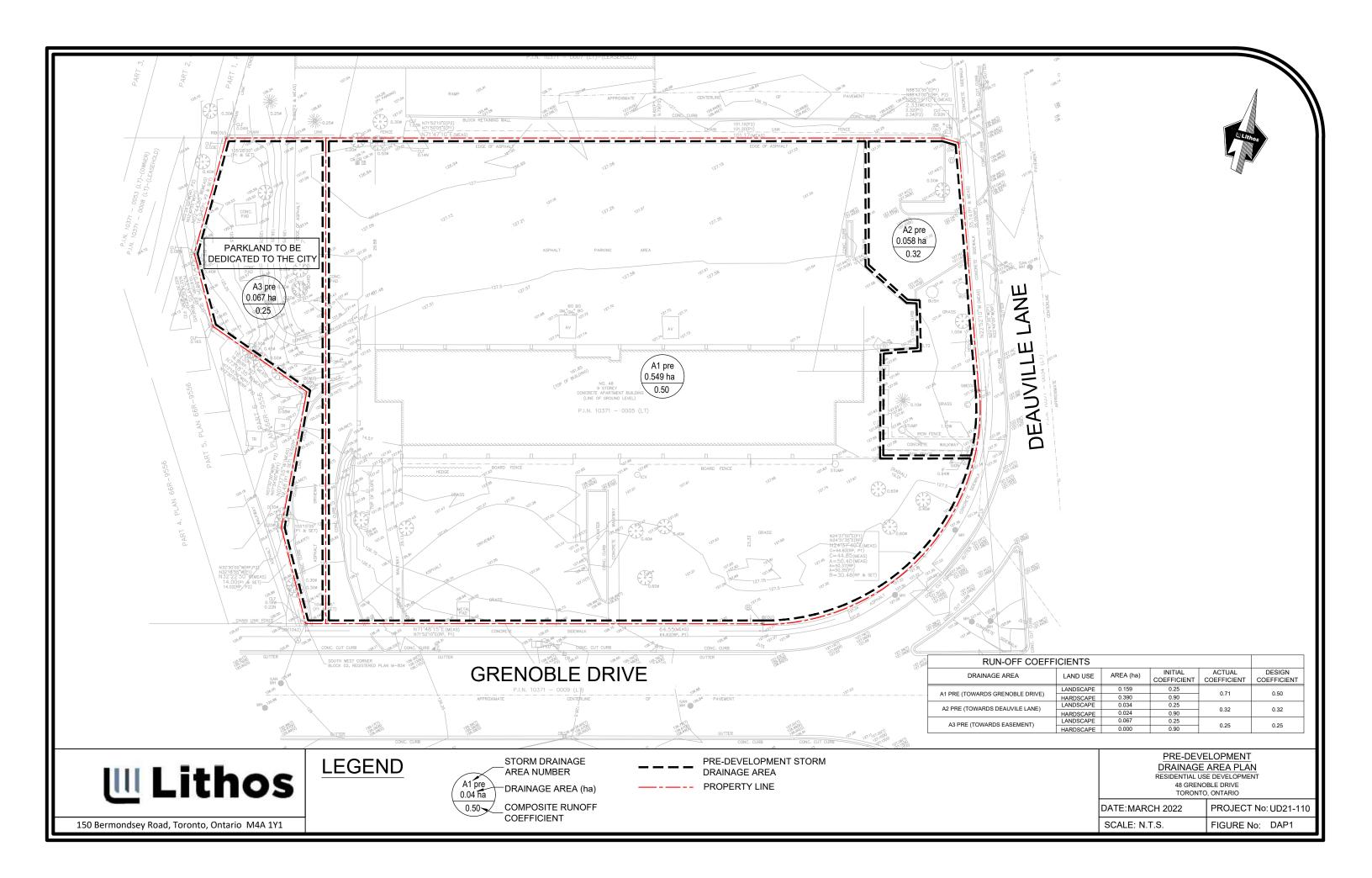
Stored Groundwater (pre-excavation/dewatering)					
Volume of	Volume of Excavation Below	Volume of Stored Groundwater		Volume of Available Groundwater	
Excavation (m ³)	Water Table (m ³)	(m³)	(L)	(m³)	(L)
86,940	21,735	12,500	12,500,000	7,100	7,100,000

Short Term (Construction) Groundwater Quantity - Safety Factor of 2.0 Used						
Groundwater Seepage Design Rainfall Event (25mm) Total Daily Water Taking					ater Takings	
L/day	L/min	L/day	L/min	L/day	L/min	
50,000	34.7	156,000	108.3	206,000	143.1	

Long Term (Permane	ent) Groundwat	er Quantity - S	afety Factor of 2	.0 Used					
Scenario	Groundwate	er Seepage		esign Rainfall 25mm)	Total Daily Water Takings				
	L/day	L/day	L/min	L/day	L/day	L/min			
Drained Structure	25,000	17.4	23,000	16.0	48,000	33.3			
Fully Watertight Structure	0	0	0	0	0	0			

Land Stability	
Maximum Zone of Influence (m)	Maximum Potential Settlement (mm)
Ę	Drained Structure - 32
3	Fully Watertight Structure - 0

File No. 21-195 Page ii



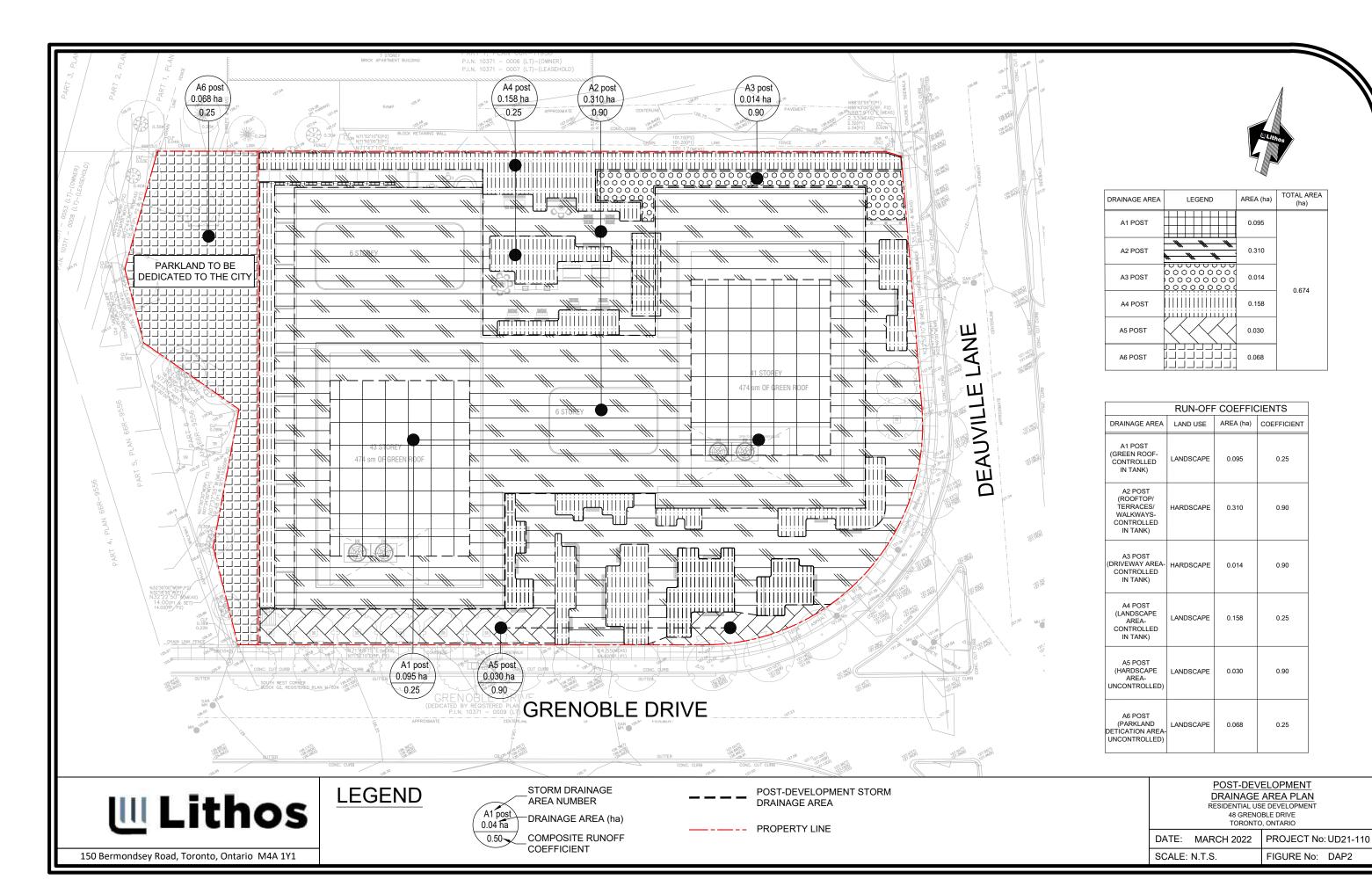
Regulatory Requirements	Drained Structure	Fully Watertight Structure
Environmental Activity and Sector Registry (EASR) Posting	Required	Required
Short Term Permit to Take Water (PTTW)	Not Required	Not Required
Long Term Permit to Take Water (PTTW)	Not Required	Not Required
Short Term Discharge Agreement City of Toronto	Required	Required
Long Term Discharge Agreement City of Toronto	Required	Required

File No. 21-195 Page iii

Appendix C

Storm Analysis

Prepared By: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed by: John Pasalidis, P.Eng., M.A.Sc.


Rational Method Pre-Development Flow Calculation

48 Grenoble Drive

File No. UD21-110
City of Toronto
Date: March 2022

Area Number	Area	Actual	Design
	(ha)	Coefficient	Coefficient
A1 Pre – towards Grenoble Drive	0.549	0.71	0.50
A2 Pre – towards Deauville Lane	0.058	0.32	0.32
A3 Pre – towards Grenoble Drive	0.067	0.25	0.25

A2 Dro. towards Cronoble Drive	0.067	0.05	0.05				
A3 Pre – towards Grenoble Drive	0.007	0.25	0.25				
		Rationa	al Method Calcu	lation			
			owards Grenob				
Event 2-year		IDF Data Set	City of Toronto	a =	21.80	c =	-0.780
Area Number	Α	C	AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m ³ /s)	(L/s)
A1 Pre	0.549	0.50	0.27	10	88.2	0.067	67.2
Event 5-year		IDE Data Set	City of Toronto	a =	32.00	c =	-0.790
Area Number	Α	C	AC AC	Tc	1	Q	Q
	(ha)	_		(min.)	(mm/h)	(m ³ /s)	(L/s)
A1 Pre	0.549	0.50	0.27	10	131.8	0.100	100.5
Event 100 year		IDE Data Sat	City of Toronto	0	50.70	0.7	0.900
Event 100-year Area Number	Α	C C	City of Toronto AC	a =	59.70	Q =	-0.800 Q
ra ou Humbon	(ha)	3	7.0	(min.)	(mm/h)	(m ³ /s)	(L/s)
A1 Pre	0.549	0.50	0.27	10	250.3	0.191	190.9
				•		•	
		A2 Pre – t	towards Deauvil	le Lane			
		IDE D.: 0:	Oit f T		04.00		0.700
Event 2-year		IDF Data Set	City of Toronto AC	a =	21.80	c =	-0.780
Area Number	A (ha)	Ü	AC	Tc (min.)	l (mm/h)	Q (m³/s)	Q (L/s)
A2 Pre	0.058	0.32	0.02	10	88.2	0.005	4.5
W-110	0.000	0.02	0.02	10	00.Z	0.000	7.0
vent 5-year		IDF Data Set	City of Toronto	a =	32.00	c =	-0.790
Area Number	Α	С	AC	Тс	ı	Q	Q
	(ha)			(min.)	(mm/h)	(m ³ /s)	(L/s)
A2 Pre	0.058	0.32	0.02	10	131.8	0.007	6.8
event 100-year		IDF Data Set	City of Toronto	a =	59.70	c =	-0.800
Area Number	Α	C	AC AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m ³ /s)	(L/s)
A2 Pre	0.058	0.32	0.02	10	250.3	0.013	12.9
		Dationa	al Method Calcul	lation			
		Nationa	A3 Pre	lation			
5		IDE D-4- 0-4	O:t f Tt-		04.00		0.700
Event 2-year Area Number	Α	C Data Set	City of Toronto	a =	21.80	c =	-0.780 Q
Alea Hullipel	(ha)	•	70	(min.)	(mm/h)	(m³/s)	(L/s)
A3 Pre	0.067	0.25	0.02	10	88.2	0.004	4.1
			****		77.2		
vent 5-year			City of Toronto	a =	32.00	c =	-0.790
		С	AC	Tc	I	Q	Q
Area Number	Α	-	I			/ ¹ /-\	(1 /-)
	(ha)		0.00	(min.)	(mm/h)	(m³/s)	(L/s)
		0.25	0.02	(min.) 10	(mm/h) 131.8	0.006	6.1
A3 Pre	(ha)	0.25	0.02 City of Toronto				6.1
A3 Pre	(ha)	0.25	•	10	131.8	0.006 c =	
A3 Pre Event 100-year	(ha) 0.067	0.25	City of Toronto	10 a =	131.8 59.70	0.006 c =	6.1 -0.800

0.674

Modified Rational Method - Hundred Year Storm Site Flow and Storage Summary - towards Grenoble Drive City of Toronto

File No. UD21-110 Date: March 2022

-				•	of Toronto		Prepared By: Isaak Chlorotyris, P.E., M.A.Sc. Reviewed By: John Pasalidis, P.Eng., M.A.Sc.
	Drainage Area A1 Post	Drainage Area A2 Post	Drainage Area A3 Post	Drainage Area A4 Post	Drainage Area A5 Post	Drainage Area A6 Post	Total Site
	Cook Donfo Controlled in Underweeted Tools	Rooftops/Driveway/Walkways - Controlled In	Driveway area - Controlled In Underground	Landscaped Controlled in Underground Tonk	Handarana Haranturllad ana	Lundana (Dayland Datination) Harantallad and	T-1-1-0%

(min) 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 65.0 70.0 75.0 80.0 95.0 100.0 115.0 120.0 125.0 130.0 135.0 140.0 145.0 150.0 150.0 150.0 170.0 175.0 180.0 185.0 170.0 175.0 185.0 175.0 185.0 18					
(mm/hr) 88.2 64.3 51.4 43.2 37.4 33.2 29.9 27.3 25.1 23.3 21.8 20.5 19.3 18.3 17.4 16.6 15.9 15.2 14.6 14.1 13.6 11.3 11.0 10.7 10.4 10.1 9.9 9.7 9.5 9.3 9.1 8.9 8.7 8.5 8.4 8.2 8.1 7.9 7.8 7.6 7.5 7.4 7.3 7.2 7.1 6.9 6.8 6.7	= 21.80 = -0.78 = A(T) ^c (2) Rainfall	Design Storm			
(m³/s) 0.006 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001	(3) Rainfall Rate (A1 Post)	Void of Volume Space = Max. Release Rate =	Time Increment = Water Retention =	Area (A1) = "C" = AC1= Tc =	Green Roofs - Controlled In
(m³) 3.48 3.81 4.06 4.26 4.44 4.59 4.73 4.85 4.96 5.07 5.17 5.26 5.34 5.43 5.50 5.58 5.65 5.72 5.78 5.84 5.90 6.02 6.07 6.12 6.18 6.23 6.27 6.32 6.37 6.41 6.45 6.50 6.54 6.58 6.62 6.66 6.70 6.73 6.77 6.81 6.84 6.88 6.91 6.94 6.98 7.01 7.04 7.07 7.10 7.13 7.16 7.19	(4) Total Storm Volume (A1 Post)		25 L/m ²	0.095 ha 0.25 0.02 10.0 min	Underground Tank
(A1 Post) (m³) 23.70	(5) Green Roof Captured Volume				
(m³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(6) Released Volume (A1 Post)				
(m³/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(7) Released Runoff (A1 Post)				
(m³/s) 0.068 0.050 0.040 0.033 0.029 0.026 0.023 0.021 0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.010 0.010 0.009 0.009 0.009 0.008	(8) Storm Runoff (A2 Post)		Time Increment : Max. Release Rate :	"C": AC2: Tc:	Rooftops/Driveway/Wal
(m³) 40.98 44.81 47.74 50.14 52.19 53.99 55.60 57.06 58.40 59.63 60.79 61.87 62.88 63.85 64.76 65.63 66.46 67.25 68.02 68.75 69.46 70.14 70.80 71.44 72.06 72.66 73.24 73.81 74.36 74.90 75.43 75.94 76.44 76.93 77.41 77.88 78.33 78.78 79.22 79.65 80.08 80.48 80.90 81.30 81.70 82.08 82.46 82.84 83.21 83.57 83.93 84.28 84.63	(9) Runoff Volume (A2 Post)			= 0.279 = 10 min	kways - Controlled In
(m³/s) 0.003 0.002 0.002 0.002 0.001 0.000	(10) Storm Runoff (A3 Post)		Time Increment Max. Release Rate	"C" AC3 Tc	
(m³) 1.91 2.08 2.22 2.33 2.43 2.51 2.59 2.65 2.72 2.77 2.83 2.88 2.93 2.97 3.01 3.05 3.09 3.13 3.16 3.20 3.23 3.26 3.29 3.35 3.38 3.41 3.43 3.46 3.49 3.51 3.53 3.56 3.60 3.62 3.64 3.67 3.69 3.71 3.73 3.75 3.76 3.78 3.80 3.82 3.84 3.85 3.87 3.89 3.91 3.92 3.94	(11) Runoff Volume (A3 Post)			= 10 min	lled In Underground
(m³/s) 0.010 0.007 0.006 0.005 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001	(12) Storm Runoff (A4 Post)		Time Increment = Max. Release Rate =	Area (A4) = "C" = AC4= Tc =	Landscaped - Controlled
(m³) 5.81 6.36 6.77 7.11 7.40 7.66 7.89 8.09 8.28 8.46 8.62 8.78 8.92 9.06 9.19 9.31 9.43 9.54 9.65 9.75 9.85 9.95 10.04 10.13 10.22 10.31 10.39 10.47 10.55 10.62 10.70 10.77 10.84 10.91 10.98 11.05 11.11 11.17 11.24 11.30 11.36 11.42 11.47 11.53 11.59 11.64 11.70 11.75 11.80 11.85 11.90 11.95 12.00	(13) Runoff Volume (A4 Post)			= 0.158 ha = 0.25 = 0.040 = 10 min	In Underground Tank
(m³/s) 0.007 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001	(14) Storm Runoff (A5 Post)		Time Increment = Max. Release Rate =	Area (A5) = "C" = AC5= Tc =	Hardscape - Uncontrolled a
(m³) 3.96 4.33 4.62 4.85 5.05 5.22 5.38 5.52 5.65 5.77 5.88 6.08 6.17 6.26 6.35 6.43 6.50 6.58 6.65 6.72 6.78 6.85 6.91 6.97 7.03 7.08 7.14 7.19 7.24 7.29 7.34 7.39 7.58 7.62 7.66 7.70 7.74 7.78 7.82 7.86 7.90 7.94 7.98 8.01 8.05 8.08 8.12 8.15 8.18	(15) Runoff Volume (A5 Post)		5.0 min 6.6 L/s	0.030 ha 0.90 0.03 10.0 min	rea
(m³/s) 0.004 0.003 0.002 0.002 0.002 0.001 0.000	(16) Storm Runoff (A6 Post)		Time Increment = Max. Release Rate =	Area (A6) = "C" = AC6= Tc =	Lnadscape (Parkland Deti
2.49 2.72 2.90 3.04 3.17 3.28 3.38 3.46 3.54 3.62 3.69 3.76 3.82 3.88 3.93 3.98 4.03 4.08 4.13 4.17 4.22 4.26 4.30 4.34 4.37 4.41 4.45 4.48 4.51 4.55 4.58 4.61 4.64 4.67 4.70 4.73 4.75 4.78 4.81 4.84 4.86 4.89 4.91 4.94 4.96 4.98 5.01 5.03 5.05 5.07 5.09 5.12 5.14	(17) Runoff Volume (A6 Post)			0.068 ha 0.25 0.02 10.0 min	cation) - Uncontrolled area
(m³) 48.70 53.25 56.73 59.58 62.02 64.16 66.07 67.81 69.40 70.87 72.24 73.52 74.73 75.87 76.96 77.99 78.98 79.92 80.83 81.70 82.54 83.35 84.14 84.90 85.63 86.35 87.04 87.71 88.37 89.01 89.03 90.24 91.92 91.99 92.54 90.84 91.42 91.99 92.54 90.84 90.84 90.84 90.84 90.86 95.16 95.565 95.66 95.16 95.565 98.00 98.44 98.88 99.31 99.755 98.00 98.44 98.88 99.31 99.74 100.16 100.57	(18) Total Storm Runoff Volume	Total S			Total Site =
(m³) 12.04 18.06 24.08 30.11 36.13 42.15 48.17 54.19 60.21 66.23 72.25 78.27 84.30 90.32 96.34 102.36 108.38 114.40 120.42 126.44 132.46 138.49 144.51 150.53 156.55 162.57 168.59 174.61 180.63 186.65 192.68 198.70 204.72 210.74 216.76 222.78 228.80 234.82 240.84 246.87 252.89 258.91 264.93 270.95 276.97 282.99 289.01 295.03 301.06 307.08 313.10 319.12 325.14	_	ite Release Rat	Uncon illed Release Rat illed Release Rat	2-yr Pre-Dev Re d Flow (Parkland	A1 + A2 + A3 +A
(m³) 36.7 35.2 32.6 29.5 25.9 22.0 17.9 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	trank Size = otprint Area = (20) Storage Volume	e Achieved =		elopment Site elease Rate = Dedication)=	4 + A5 +A6
(m) 0.58 0.56 0.52 0.47 0.41 0.35 0.28 0.21 0.15 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.0	36.7 m³ 63.34 m² (21) Storage Depth of Tank	30.8 L/s	6.6 L/s 10.8 L/s 20.1 L/s	71.3 L/s	

Drainage Area A1 Post

Drainage Area A2 Post

Drainage Area A3 Post

Modified Rational Method - Hundred Year Storm Site Flow and Storage Summary - towards Grenoble Drive City of Toronto

Drainage Area A5 Post

File No. UD21-110

Date: March 2022

Total Site

Drainage Area A6 Post

Prepared By: Isaak Chlorotyris, P.E., M.A.Sc. Reviewed By: John Pasalidis, P.Eng., M.A.Sc.

	Drainage Area A1	Post				Drainage Area A	2 Post	Drainage Area	A3 Post	Drainage Area A	4 Post	Drainage Area A5 P	ost	Drainage Area A6	Post	Total Site			
	Green Roofs - Controlled Ir	underground Tank				Rooftops/Driveway/Walk Underground Tank	ways - Controlled I	n Driveway area - Contro Tank	olled In Underground	Landscaped - Controlled	In Underground Tank	Hardscape - Uncontrolled are	ea	Lnadscape (Parkland Detic	ation) - Uncontrolled area	Total Site =	A1 + A2 + A3 +	+A4 + A5 +A6	
	"C": AC1: Tc: Time Increment: Water Retention:	= 0.02 = 10.0 min = 5.0 min = 25 L/m ² = 23.7 m ³				Area (A2) = "C" = AC2= Tc = Time Increment = Max. Release Rate =	= 0.279 = 10 min = 5 min	Area (A3) "C" AC3 Tc Time Increment Max. Release Rate	3= 0.013 = 10 min = 5 min		= 10 min = 5 min	Area (A5) = "C" = AC5= Tc = Time Increment = Max. Release Rate =	0.030 ha 0.90 0.03 10.0 min 5.0 min	Area (A6) = "C" = AC6= Tc = Time Increment = Max. Release Rate =	0.068 ha 0.25 0.02 10.0 min 5.0 min	Total Unconti	lled Flow (Parklar	ontrolled Flow = Rate Achieved =	71.3 L/s 6.2 L/s 9.9 L/s 16.1 L/s 25.0 L/s
	Max. Release Rate	= 0.0 L/s																	
0-Year Design Storm																Total	Site Release Ra	ate Achieved =	41.1 L/s
a= 32.00 c= -0.79 I = A(T) ^c																		ge Tank Size = footprint Area =	
1) (2) me Rainfall	(3) Rainfall	(4) Total Storm	(5) Green Roof	(6) Released	(7) Released	(8) Storm	(9) Runoff	(10) Storm	(11) Runoff	(12) Storm	(13) Runoff	(14) Storm	(15) Runoff	(16) Storm	(17) Runoff	(18) Total Storm	(19) Released	(20) Storage	(21) Storage
Intensity	Rate (A1 Post)	Volume (A1 Post)	Captured Volume (A1 Post)	Volume (A1 Post)	Runoff (A1 Post)	Runoff (A2 Post)	Volume (A2 Post)	Runoff (A3 Post)	Volume (A3 Post)	Runoff (A4 Post)	Volume (A4 Post)	Runoff (A5 Post)	Volume (A5 Post)	Runoff (A6 Post)	Volume (A6 Post)	Runoff Volume	Volume	Volume	Depth of Ta
) (mm/hr) 131.8	(m³/s) 0.009	(m³) 5.21	(m³) 23.70	(m³) 0.00	(m³/s) 0.00	(m³/s) 0.102	(m³) 61.25	(m³/s) 0.005	(m³) 2.85	(m³/s) 0.014	(m³) 8.69	(m³/s) 0.010	(m³) 5.92	(m³/s) 0.006	3.72	(m³) 72.79	(m³) 15.02	(m³) 57.8	(m) 0.91
95.7 76.2 63.9 95.7 76.2 63.9 95.3 49.0 44.1 40.2 97.0 97.0 98.3 90.0 98.3 90.0 98.3 90.0 98.3 90.0 98.3 90.0 98.3 90.0 98.3 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99	0.006 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001	5.67 6.02 6.31 6.56 6.77 6.96 7.14 7.30 7.45 7.58 7.71 7.83 7.95 8.06 8.16 8.26 8.35 8.44 8.53 8.61 8.69 8.77 8.85 8.92 8.99 9.06 9.13 9.13 9.19 9.26 9.32 9.32 9.32 9.32 9.34 9.55 9.61 9.61 9.77 9.87 9.87 9.87 9.87 9.87 9.87 9.87	23.70 23.70	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.074 0.059 0.049 0.043 0.038 0.034 0.031 0.029 0.027 0.025 0.023 0.022 0.021 0.020 0.019 0.018 0.017 0.016 0.015 0.015 0.015 0.015 0.014 0.013 0.013 0.012 0.012 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008	66.69 70.85 74.24 77.14 79.68 81.95 84.00 85.88 87.61 89.23 90.74 92.17 93.51 94.79 96.00 97.16 98.27 99.33 100.36 101.34 102.29 103.21 104.10 104.96 105.80 106.61 107.39 108.16 108.91 109.64 111.72 112.38 113.03 113.67 114.29 114.90 115.50 116.08 116.08 117.22 118.86 117.22 118.86 119.90 120.41 120.91	0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.000	3.10 3.30 3.45 3.59 3.71 3.81 3.91 4.00 4.08 4.15 4.22 4.29 4.35 4.41 4.47 4.52 4.57 4.62 4.67 4.72 4.76 4.80 4.84 4.88 4.92 4.96 5.00 5.03 5.07 5.10 5.13 5.17 5.20 5.23 5.26 5.29 5.32 5.35 5.37 5.40 5.43 5.45 5.48 5.51 5.55 5.58 5.60 5.63	0.011 0.008 0.007 0.006 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	9.46 10.05 10.53 10.94 11.30 11.62 11.91 12.18 12.43 12.66 12.87 13.07 13.26 13.44 13.62 13.78 14.09 14.23 14.37 14.51 14.64 14.77 14.89 15.01 15.12 15.23 15.34 15.45 15.55 15.65 15.75 15.85 15.94 16.03 16.12 16.21 16.30 16.38 16.46 16.55 16.63 16.70 16.78 16.86 16.93 17.01 17.08 17.15	0.007 0.006 0.005 0.004 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001	6.45 6.85 7.18 7.46 7.71 7.93 8.12 8.31 8.47 8.63 8.78 8.91 9.04 9.17 9.28 9.40 9.50 9.61 9.71 9.80 9.89 9.98 10.07 10.15 10.23 10.31 10.39 10.46 10.53 10.60 10.67 10.74 10.80 10.87 10.93 10.93 10.93 10.93 11.11 11.17 11.23 11.34 11.39 11.44 11.49 11.55 11.60 11.65 11.60	0.004 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001	4.05 4.30 4.51 4.68 4.84 4.97 5.10 5.21 5.32 5.42 5.51 5.59 5.68 5.75 5.83 5.90 6.93 6.15 6.21 6.27 6.32 6.37 6.42 6.47 6.52 6.61 6.66 6.70 6.74 6.78 6.82 6.86 6.90 6.94 6.97 7.01 7.05 7.08 7.12 7.15 7.18 7.21 7.25 7.28 7.31 7.34	79.25 84.19 88.23 91.67 94.69 97.38 99.82 102.05 104.12 106.04 107.83 109.53 111.12 112.64 114.08 115.46 116.78 118.04 119.26 120.43 121.56 122.65 123.71 124.73 125.72 126.69 127.62 128.54 129.42 130.29 131.13 131.96 132.77 133.55 134.32 135.08 135.82 136.54 137.25 137.95 138.63 139.30 139.96 140.61 141.24 141.87 142.49 143.09 143.69	22.53 30.04 37.55 45.06 52.57 60.08 67.59 75.10 82.61 90.12 97.63 105.14 112.64 120.15 127.66 135.17 142.68 150.19 157.70 165.21 172.72 180.23 187.74 195.25 202.76 210.27 217.78 225.29 232.80 240.31 247.82 255.33 262.84 270.35 277.86 285.37 292.88 300.39 307.90 315.41 322.92 330.42 337.93 345.44 352.95 360.46 367.97 375.48 382.99	56.7 54.2 50.7 46.6 42.1 37.3 32.2 27.0 21.5 15.9 10.2 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.90 0.85 0.80 0.74 0.66 0.59 0.51 0.43 0.34 0.25 0.16 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Drainage Area A4 Post

Drainage Area A1 Post

Modified Rational Method - Hundred Year Storm Site Flow and Storage Summary - towards Grenoble Drive City of Toronto

Drainage Area A5 Post

Drainage Area A6 Post

File No. UD21-110 Date: March 2022

Total Site

Prepared By: Isaak Chlorotyris, P.E., M.A.Sc. Reviewed By: John Pasalidis, P.Eng., M.A.Sc.

	Diamage Area Arr	-031				Diamage Alea A		Diamage Area		Dialilage Alea A	14 F USI	Diamage Area A5	rusi	Dialilage Alea Ao	FOST	Total Site			
	Green Roofs - Controlled In	Underground Tank				Rooftops/Driveway/Wall Underground Tank	kways - Controlled In	Driveway area - Contro Tank	olled In Underground	Landscaped - Controlled	d In Underground Tank	Hardscape - Uncontrolled	area	Lnadscape (Parkland Deti	cation) - Uncontrolled area	Total Site =	A1 + A2 + A3 +	+A4 + A5 +A6	
	Area (A1) = "C" = AC1= Tc = Time Increment = Water Retention =	0.02 10.0 min 5.0 min				Area (A2) = "C" = AC2= Tc = Time Increment =	0.279 10 min	Area (A3) "C" AC3 Tc Time Increment	3= 0.013 = 10 min	Area (A4) : "C": AC4: Tc: Time Increment:	= 0.040 = 10 min	Area (A5) = "C"= AC5= Tc = Time Increment =	0.030 ha 0.90 0.03 10.0 min 5.0 min	Area (A6) = "C" = AC6= Tc = Time Increment =	0.02 10.0 min		f ed Flow (Parklan Unco	evelopment Site Release Rate = nd Dedication)= ontrolled Flow = ate Achieved =	71.3 L/s 11.8 L/s 18.8 L/s 30.5 L/s
	Void of Volume Space = Max. Release Rate =					Max. Release Rate =	: 193.9 L/s	Max. Release Rate	= 9.0	Max. Release Rate	= 27.5 L/s	Max. Release Rate =	18.8 L/s	Max. Release Rate =	11.8 L/s	Contr	olled Release R	ate Achieved =	38.5 L/s
100-Year Design Storm a= 59.70 c= -0.80 I = A(T) ^c																Total	Max. Storaç	ate Achieved = ge Tank Size = footprint Area =	
(1) (2) Time Rainfall	(3) Rainfall	(4) Total Storm	(5) Green Roof	(6) Released	(7) Released	(8) Storm	(9) Runoff	(10) Storm	(11) Runoff	(12) Storm	(13) Runoff	(14) Storm	(15) Runoff	(16) Storm	(17) Runoff	(18) Total Storm	(19) Released	(20) Storage	(21) Storage
Intensity	Rate (A1 Post)	Volume (A1 Post)	Captured Volume	Volume (A1 Post)	Runoff (A1 Post)	Runoff (A2 Post)	Volume (A2 Post)	Runoff (A3 Post)	Volume (A3 Post)	Runoff (A4 Post)	Volume (A4 Post)	Runoff (A5 Post)	Volume (A5 Post)	Runoff (A6 Post)	Volume (A6 Post)	Runoff Volume	Volume	Volume	Depth of Tank
(min) (mm/hr)	(m³/s)	(m³)	(A1 Post) (m³)	(m ³)	(m³/s)	(m³/s)	(m ³)	(m³/s)	(m³)	(m³/s)	(m³)	(m³/s)	(m³)	(m³/s)	, ,	(m³)	(m ³)	(m³)	(m)
10.0 250.3 15.0 143.8 25.0 143.8 25.0 120.3 30.0 103.3 35.0 91.9 40.0 82.6 45.0 75.1 50.0 69.1 55.0 64.0 60.0 59.7 65.0 56.0 70.0 52.8 75.0 49.9 80.0 47.4 85.0 45.2 90.0 43.2 95.0 41.3 100.0 39.7 105.0 38.2 110.0 36.8 115.0 35.5 120.0 34.3 125.0 33.2 135.0 31.2 140.0 30.3 145.0 29.5 155.0 27.9 160.0 27.2 165.0 26.6 170.0 25.9 175.0 24.8 185.0 24.8 185.0 24.3 190.0 23.7 195.0 23.3 200.0 22.3 210.0 21.9 225.0 22.3 210.0 21.9 225.0 22.3 220.0 21.1 225.0 22.3 220.0 22.1 225.0 20.7 235.0 20.0 240.0 19.7 245.0 19.4 255.0 18.8 265.0 18.5 265.0 18.5 265.0 18.5 265.0 18.5 265.0 18.5 265.0 18.8 265.0 18.5 265.0 18.8 265.0 18.5 265.0 18.8 265.0 18.8 265.0 18.8 265.0 18.8 265.0 18.8 265.0 18.8 265.0 18.9 270.0 17.9	0.016 0.012 0.009 0.008 0.007 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001	9.89 10.72 11.36 11.88 12.32 12.70 13.05 13.36 13.64 13.90 14.15 14.38 14.59 14.79 14.79 15.51 15.67 15.82 15.97 16.12 16.25 16.39 16.52 16.64 16.76 16.88 16.99 17.11 17.22 17.32 17.43 17.53 17.63 17.72 17.82 17.91 18.00 18.09 18.18 18.26 18.35 18.43 18.51 18.59 18.67 18.75 18.82 18.90 18.97 19.04 19.11	23.70 23.70	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.194 0.140 0.111 0.093 0.081 0.071 0.064 0.058 0.054 0.050 0.046 0.043 0.041 0.039 0.037 0.035 0.033 0.032 0.031 0.030 0.028 0.027 0.027 0.026 0.025 0.024 0.023 0.022 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.020 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018 0.016 0.016 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.015 0.014	116.33 126.16 133.63 139.73 144.92 149.46 153.50 157.16 160.51 163.60 166.47 169.15 171.68 174.07 176.33 178.48 180.53 182.49 184.37 186.18 187.92 189.60 191.22 192.79 194.31 195.78 197.21 198.60 199.95 201.26 202.55 203.80 205.02 206.21 207.37 208.51 209.63 210.72 211.79 212.84 213.87 214.88 215.87 216.84 217.79 218.73 219.66 220.56 221.46 222.34 223.20 224.05 224.89	0.009 0.007 0.005 0.004 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001	5.41 5.87 6.22 6.50 6.74 6.95 7.14 7.31 7.47 7.61 7.75 7.87 7.99 8.10 8.20 8.30 8.40 8.49 8.58 8.66 8.74 8.82 8.90 8.97 9.04 9.11 9.18 9.24 9.30 9.36 9.42 9.48 9.59 9.65 9.75 9.85 9.65 9.75 9.80 9.95 9.90 9.95 10.00 10.04 10.09 10.13 10.18 10.22 10.30 10.35 10.39 10.43 10.46	0.028 0.028 0.020 0.016 0.013 0.011 0.010 0.009 0.008 0.008 0.007 0.007 0.006 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003	16.50 17.89 18.95 19.82 20.55 21.20 21.77 22.29 22.77 23.20 23.61 23.99 24.35 24.69 25.01 25.31 25.61 26.89 27.12 27.34 27.56 27.77 27.97 28.17 28.36 28.55 28.73 28.91 29.08 29.25 29.41 29.58 29.73 29.89 30.04 30.19 30.33 30.48 30.62 30.76 30.89 31.02 31.16 31.28 31.41 31.54 31.66 31.78 31.90	0.019 0.014 0.011 0.009 0.008 0.007 0.006 0.006 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002	11.25 12.20 12.92 13.51 14.02 14.45 14.45 14.85 15.20 15.52 15.82 16.10 16.36 16.60 16.83 17.05 17.26 17.46 17.46 17.48 18.49 18.64 18.79 18.93 19.07 19.21 19.34 19.46 19.59 19.71 19.83 19.07 19.21 19.34 19.46 20.17 20.27 20.38 20.48 20.68 20.78 20.48 20.68 20.78 20.68 20.78 20.88 20.97 21.06 21.15 21.24 21.33 21.42 21.50 21.59 21.67 21.75	0.012 0.009 0.007 0.006 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001	7.06 7.66 8.11 8.48 8.80 9.07 9.32 9.54 9.74 9.93 10.10 10.27 10.42 10.57 10.70 10.83 10.96 11.08 11.19 11.30 11.41 11.51 11.61 11.70 11.79 11.88 11.97 12.06 12.14 12.22 12.29 12.37 12.44 12.52 12.59 12.66 12.72 12.79 12.86 12.92 12.98 13.04 13.10 13.16 13.22 13.28 13.33 13.39 13.44 13.50 13.65	138.25 149.92 158.80 166.05 172.22 177.61 182.42 186.76 190.74 194.41 197.83 201.02 204.02 206.85 209.54 212.10 214.54 216.87 219.10 221.25 223.32 227.24 229.10 230.91 232.66 234.36 234.36 234.36 234.36 234.36 234.36 234.36 234.36 234.36 234.36 235.31 257.61 259.18 241.70 242.19 243.64 247.79 249.12 250.41 251.69 252.93 254.15 255.35 256.53 257.68 258.82 259.94 261.03 262.11 263.17 264.22 265.24	23.09 34.64 46.18 57.73 69.27 80.82 92.36 103.91 115.45 127.00 138.55 150.09 161.64 173.18 184.73 196.27 207.82 219.36 230.91 242.45 254.00 265.54 277.09 288.64 300.18 311.73 323.27 334.82 346.36 357.91 369.45 381.00 392.54 404.09 415.64 427.18 438.73 450.27 461.82 473.36 484.91 496.45 508.00 519.54 531.09 542.64 554.18 565.73 577.27 588.82 600.36 611.91 623.45	115.2 115.3 112.6 108.3 102.9 96.8 90.1 82.9 75.3 67.4 59.3 50.9 42.4 33.7 24.8 15.8 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.82 1.82 1.78 1.71 1.63 1.71 1.63 1.53 1.42 1.31 1.19 1.06 0.94 0.80 0.87 0.53 0.39 0.25 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Drainage Area A4 Post

Drainage Area A3 Post

Drainage Area A2 Post

Orifice Design

48 Grenoble Drive

File No. UD21-110

Date: March 2022

Prepared By: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed by: John Pasalidis, P.Eng., M.A.Sc.

Orifice Equation for 100 mm orifice tube

$$Q = C \times A \times \sqrt{2 \times g \times h}$$

<u>1</u>	100 yr event		;	<u>5 yr even</u>	<u>t</u>	2 yr event				
d=	100	mm	d=	100	mm	d=	100	mm		
C=	0.82		C=	0.82		C=	0.82			
A=	0.008	m^2	A=	0.008	m^2	A=	0.008	m^2		
g=	9.81	m/s ²	g=	9.81	m/s ²	g=	9.81	m/s ²		
h=	1.82	m	h=	0.77	m	h=	0.50	m		
Q=	38.5	L/s	Q=	25.0	L/s	Q=	20.1	L/s		

Water Balance Calculation

48 Grenoble Drive

File No. UD21-110

Date: March 2022

Prepared By: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed By: John Pasalidis, P.Eng., M.A.Sc.

Total rainfall volume required at 5mm	30.37	m^3
Rainfall depth to be retained	5.0	mm
Contributing Drainage Area	6073	m^2

Initial Abstraction Calculations

Surface	Area (m²)	IA (mm)	Volume (m³)	
Landscape	2530	5.0	12.65	m^3
Roof		1.0	0.00	
Hardscape	3543	1.0	3.54	m^3
Total	6073		16.19	m^3

Additional Water Balance Required to be Stored 14.17 m³

Water Quality Calculations

48 Grenoble Drive File No. UD21-110 Date: March 2022

Prepared By: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed by: John Pasalidis, P.Eng., M.A.Sc.

Surface	Method	Effective TSS Removal	Area (ha)	% Area of Controlled Site	Overall TSS Removal
Rooftop/ Terraces/Green Roof/Walkways/Landscape/Hardscape	Inherent	80%	0.563	98%	78%
Driveway / Landscape Area	SPFD 0608	80%	0.014	2%	2%
Total			0.577	100%	80%

Note: Uncontrolled water does not account in the above calculations

Determining Number of Cartridges for Flow Based Systems

Date 3/3/2022 Black Cells = Calculation

Site Information

Project Name
Project Location
OGS ID

Drainage Area, Ad Impervious Area, Ai Pervious Area, Ap % Impervious Runoff Coefficient, Rc

Treatment storm flow rate, Q_{treat}

Peak storm flow rate, Qpeak

Filter System

Filtration brand Cartridge height Specific Flow Rate Flow rate per cartridge

48 Grenoble Drive Toronto, ON

Toronto, ON Stormfilter

0.03 ac (0.014 ha) 0.03 ac 0.00 100% 0.90

0.02 cfs (0.7 L/s) **0.32** cfs (9 L/s)

StormFilter

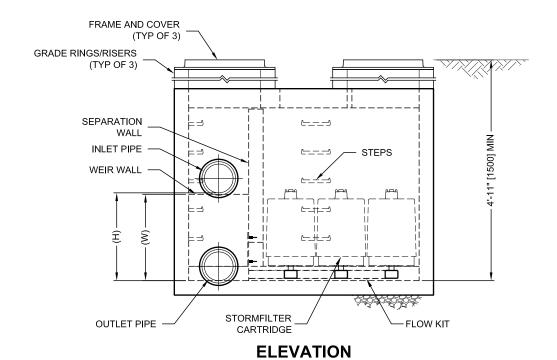
12 in 2.00 gpm/ft² 10.00 gpm

SUMMARY

Number of Cartridges	2
Media Type	Perlite

Event Mean Concentration (EMC)

Annual TSS Removal

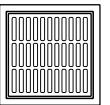

Percent Runoff Capture

120 mg/L

80%

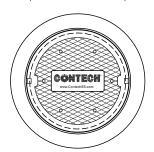
90%

Recommend SF08608 vault or CIP


THIS PRODUCT MAY BE PROTECTED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS: 5,322,629; 5,524,576; 5,707,527; 5,985,157; 6,027,639; 6,649,048; RELATED FOREIGN PATENTS, OR OTHER PATENTS PENDING.

STORMFILTER DESIGN NOTES

- STORMFILTER TREATMENT CAPACITY VARIES BY CARTRIDGE COUNT AND LOCALLY APPROVED SURFACE AREA SPECIFIC FLOW RATE. PEAK
 CONVEYANCE CAPACITY TO BE DETERMINED BY ENGINEER OF RECORD
- A 6' x 8' [1829 x 2438] PEAK DIVERSION STYLE STORMFILTER IS SHOWN WITH THE MAXIMUM NUMBER OF CARTRIDGES (8) AND IS AVAILABLE IN
 A LEFT INLET (AS SHOWN) OR A RIGHT INLET CONFIGURATION
- ALL PARTS AND INTERNAL ASSEMBLY PROVIDED BY CONTECH UNLESS NOTED OTHERWISE.


CARTRIDGE SIZE (in. [mm])		27 [686]			18 [457]			LOW DROP	
RECOMMENDED HYDRAULIC DROP (H) (ft. [mm])		3.05 [930]			2.3 [701]			1.8 [549]	
HEIGHT OF WEIR (W) (ft. [mm])		3.00 [914]			2.25 [686]			1.75 [533]	
SPECIFIC FLOW RATE (gpm/sf [L/s/m ²])	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]
CARTRIDGE FLOW RATE (gpm [L/s])	22.5 [1.42]	18.79 [1.19]	11.25 [0.71]	15 [0.95]	12.53 [0.79]	7.5 [0.47]	10 [0.63]	8.35 [0.53]	5 [0.32]

* 1.67 gpm/sf [1.13 L/s/m²] SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB® (PSORB) MEDIA ONLY

FRAME AND GRATE

(24" SQUARE) (NOT TO SCALE)

FRAME AND COVER

(30" ROUND) (NOT TO SCALE)

SITE SPECIFIC DATA REQUIREMENTS

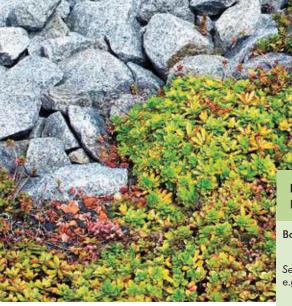
DAIA	IVE &O	11.ZE1A1E14											
STRUCTURE ID													
WATER QUALITY F	LOW RATE (cfs [L/s])											
PEAK FLOW RATE ((cfs [L/s])												
RETURN PERIOD O	F PEAK FLO	W (yrs)											
CARTRIDGE FLOW	RATE												
CARTRIDGE SIZE (2	27, 18, LOW	DROP (LD))											
MEDIA TYPE (PERLITE, ZPG, PSORB)													
NUMBER OF CARTRIDGES REQUIRED													
INLET BAY RIM ELE	VATION												
FILTER BAY RIM EL	EVATION												
PIPE DATA:	INVERT	MATERIAL	DIAMETER										
INLET PIPE 1													
INLET PIPE 2													
OUTLET PIPE	·												
NOTES/SPECIAL RE	QUIREMEN	TS:											

PERFORMANCE SPECIFICATION

FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE 7" [178]. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 38 SECONDS. SPECIFIC FLOW RATE SHALL BE 2 GPM/SF [1.36 L/s/m²] (MAXIMUM). SPECIFIC FLOW RATE IS THE MEASURE OF THE FLOW (GPM) DIVIDED BY THE MEDIA SURFACE CONTACT AREA (SF). MEDIA VOLUMETRIC FLOW RATE SHALL BE 6 GPM/CF [13.39 L/s/m³] OF MEDIA (MAXIMUM).

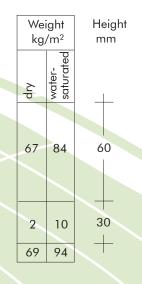
GENERAL NOTES

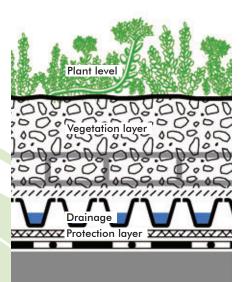
- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. ALTERNATE DIMENSIONS ARE IN MILLIMETERS [mm] UNLESS NOTED OTHERWISE.
- 4. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH REPRESENTATIVE. www.ContechES.com
- 5. STORMFILTER WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- 6. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' 10' [3048] AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.


INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STORMFILTER STRUCTURE.
- C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL SECTIONS AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH OUTLET PIPE INVERT WITH OUTLET BAY FLOOR.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF.
- F. CONTRACTOR TO REMOVE THE TRANSFER OPENING COVER WHEN THE SYSTEM IS BROUGHT ONLINE.

800-338-1122 513-645-7000 513-645-7993 FAX


SFPD0608 (6' x 8')
PEAK DIVERSION STORMFILTER
STANDARD DETAIL



Plant Suggestions "Sedum Carpet"

Plants in small groups (groups of 3, 5 or 7)

Botanical Name	Common Name	Height (mm)	Blossom Colour	Blossom Period (month)
Sedum album varieties e.g. ,Coral Carpet'	White stonecrop varieties	50–100 50–100	white	6–8
,Murale′		50–100	white pale- rose	6–8 6
Sedum cauticolum	Nettle-leaved goosefoot	100–150	rose	8–9
Sedum floriferum ,Weihenstep. Gold'	Gold sedum	100–150	yellow	6–7
Sedum hybridum ,Immergrünchen'	Hybrid stonecrop	100–150	yellow	7–8
Sedum reflexum	Crooked yellow stonecrop	200–250	yellow	6–7
Sedum sexangulare	Tasteless yellow stonecrop	50–100	yellow	6–7
Sedum spurium in varieties. e.g. ,Album Superbum'	Dragon`s blood	100–150	white**	7–8
"Fuldaglut" "Roseum Superbum" "Splendens" "Variegatum" ** infrequent blooming		100–150 100–150 100–150 100–150		7–8 7–8 7–8 7–8

Mixture of Sedum Cuttings according to plant suggestions "Sedum Carpet"

System Substrate "Sedum Carpet"

Safety Device "Fallnet®", if required (attention to load requirements)

Filter Sheet SF

Floradrain® FD 25-E

Protection Mat SSM 45

Root Barrier WSF 40,

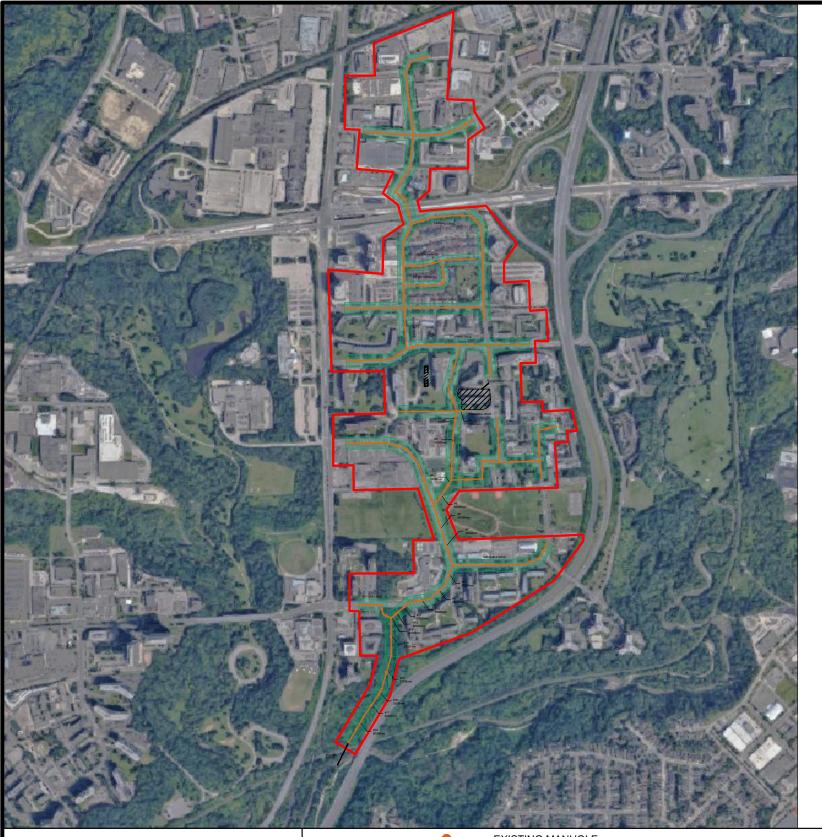
if waterproofing is not root-resistant

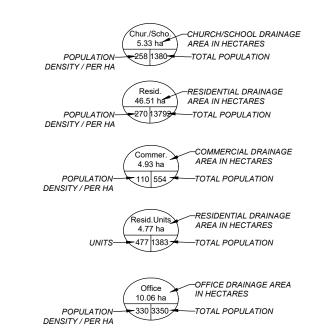
Build-up height: ca. 90 mm

Weight, saturated: ca. 95 kg/m²

Water retention capacity: ca. 25 l/m²

Appendix D


Sanitary Data Analysis



SANITARY SEWER DESIGN SHEET

48 Grenoble Dr

<u> </u>				RESIDE	ENTIAL				COMM	ERCIAL					FL	ow						S	EWER	DESIGN	
	SECTION			NUMBER	OF UNITS			SECTION	СОММ	SECTION	TOTAL	AVERAGE	HARMON	RES. PEAK	AVERAGE	TOTAL	INFILT.	TOTAL	PEAK	TOTAL	PIPE	PIPE		FULL FLOW	% of DESIG
LOCATION	AREA	Single Fam. Dwell.	Townhouse	Studio	1 Bed Apts.	2 Bed Apts.	3 Bed Apts.	POP.	AREA	POP. @ 110 ppha	ACCUM. POP.	RESIDENTIAL FLOW '@' 240 L/c/d	PEAKING FACTOR	FLOW	COMMERCIAL FLOW @ 250 L/c/d	ACCUM.	@ 0.26 L/s/ha.	SANITARY FLOW	GROUNDWATER FLOW	DESIGN FLOW	LENGTH	DIA.	SLOPE	n = 0.013	CAPACITY
	(ha.)	@ 3.5 ppu	@ 2.7	@ 1.4 ppu	@ 1.4 ppu	@ 2.1 ppu	@ 3.1 ppu	(persons)	(ha.)	(persons)	(persons)	(L/s)		(L/s)	(L/s)	(ha.)	(L/s)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/sec)	(%)
column number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Existing Condition Residential Development	0.675	0.00	0.00	0	112	48	32	357	0	0	357	0.99	4.05	4.01	0.00	0.675	0.18	4.01	0.00	4.19					
Proposed Condition Residential Development																									
Podium	0.407	0	0	0	50	59	0	194	0.000	0	194	0.54	4.15	2.24	0.00	0.407	0.11	2.24	0.00	2.35		150	2.0%	21.54	10.9%
East Building	0.100	0	0	0	275	110	40	740	0.000	0	740	2.06	3.88	7.98	0.00	0.100	0.03	7.98	0.00	8.01		200	2.0%	46.38	17.3%
West Building	0.100	0	10	0	291	115	53	840	0.000	0	840	2.33	3.85	8.98	0.00	0.100	0.03	8.98	0.00	9.01		200	2.0%	46.38	19.4%
Residential Flow Rate - 240 litres/c Commercial/Office Flow Rate - 250 Firehouse Flow Rate - 180000 L/ha Infiltration - 0.26 L/ha Foundation allowance - 3.0 L/ha Peaking Factor = 1 + [14 / (4 + P ^{0.5} Site Area (ha):	O litres/c a/day	apita/day	_											otal Net Flor	w (Towards	Downstrea	m Sanitary	/ Network)		19.36 15.17					
	Propaged by: Jeack Chloroticis E										l -	48 Greno													
Ⅲ Litho :	S				ed by: Jor arch 2022		ais, P.En	g., M.A.S	SC.		Project: City of To	UD21-110									ļ			Sheet 1 (2 7

DOWNST		MBINED S		EGMENT
SEWER SEGMENT	TYPE	SIZE (mm)	LENGTH (m)	SLOPE (%)
#1	CIR	450	28.5	1.00
#2	CIR	450	67.7	0.74
#3	CIR	450	90.5	0.79
#4	CIR	525	87.2	0.50
#5	CIR	525	64.0	0.55
#6	CIR	600	102.4	0.30
#7	CIR	600	99.7	0.30
#8	CIR	600	74.1	0.57
#9	CIR	600	67.1	0.60
#10	CIR	600	61.0	0.60
#11	CIR	600	48.2	0.65
#12	CIR	600	20.7	46.50
#13	CIR	600	5.4	2.00
#14	CIR	525	113.4	3.26
#15	CIR	525	104.2	2.00
#16	CIR	525	55.2	3.60
#17	CIR	600	97.5	0.36
#18	CIR	600	97.5	0.36

150 Bermondsey Road, Toronto, Ontario M4A 1Y1

LEGEND

EXISTING MANHOLE

NUMBERED SEGMENT AS INDICATED IN "EXTERNAL ANALYSIS" DESIGN SHEET

DRAINAGE AREA

EXISTING COMBINED SEWER

INFILTRATION AREA

TTTT FUTURE DEVELOPMENTS

COMBINED SEWER NETWORK DRAINAGE AREA PLAN
RESIDENTIAL DEVELOPMENT 48 GRENOBLE DRIVEWAY TORONTO, ONTARIO

DATE: FEBRUARY 2022 | PROJECT No: UD21-110 SCALE: N.T.S. FIGURE No: DAP3

EXTERNAL SANITARY SEWER SEGMENTS 48 Grenoble Dr

DRY WEATHER City of Toronto

250 Uvidsy - existing institutional commercial
240 Uvidsy - existing residential Mr = Peaking Factor (residential) = 1 + 14/(4+P^5.5) where P = population in 1000's
240 Uvidsy - existing residential Mr = Peaking Factor (residential) = 1 + 14/(4+P^5.5) where P = population in 1000's
240 = a = average 46th pre-creating flow (c.m./ds) = unit of peak entraneous flow
240 (p) = peak population flow (U/s) Q(p) = PQM/86.4 (U/s)

Q (I) = peak extraneous flow (L/s) Q(I) = IA (L/s) where I = 0.26 L/s/ha, and A = drainage area - commercial area (ha)

Q (C) = peak flow from commercial area | Q(C) = based on Y L/p/day - residential equivalent (see below)

																		•												Q (d) = peak design flo	ow (L/s)	Q(d) = Q(p) + Q(l) +	(C)+ Q(F)				
					LOC	ATION											POPULA	TION											FLOWS(CUMMULATIVE)						SCENARIO 1	SCENARIO 2
						,,,,,,,,,							RESIDENTIAL					TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	Peak Factor	Drainage	Infiltration	RESIDENTIAL	INFILTRATION	NUN	EXISTING PEAK	PROPOSED	TOTAL PEAK	ĺ			Pre-development	Post-development
	Sewer Segment	Drainage Are	Infiltration Area	Semi -	Residential	OFFICE	Hospital/Old	Church/Scho	ol Commercial	Future Development (Residential)	Future Development (Church)	Future Development (Commercial)	(@ 2.7 people/Unit,	OFFICE	Hospital/Old age	CHURCH	COMMERCIAL	RESIDENTIAL	OFFICE	age age	CHURCH	COMMERCIAL	PEOPLE	(residential)	Area	Area		DRY WEATHER	RESIDENTIAL	FLOW	FLOW	DESIGN FLOW	GRADE M	lax. Allowable	PIPE	% of DESIGN	% of DESIGN
DESCRIPTION	, and the second			Townhouse	reordentia	011102	age	Ondroniconc	or Commoroidi	((=)	(and 270 people/ha)	(@ 330 people/ha)	(@ 333 people/ha)	(258 people/ha)	(@ 110people/ha)	(cummulative)	(cummulative)	(cummulative)	(cummulative)	(cummulative)	(cummulative)	М	(cummulative) ((cummulative)	Q (p)	Q (I)	Q(C)	(Cummulative)	Q(prop.)*	(Cummulative)	(used)	Flow	SIZE	CAPACITY	CAPACITY
	based on CUMAP Drawing	(hectares)	(hectares)	(units)	(hectares)	(hectares)	(hectares)	(hectares)	(hectares)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(dimensionless)	(hectares)	(hectares)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(%)	(L/s)	(mm)	(%)	(%)
column number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
DOWNSTREAM SEW	R SEGMENTS																																<u> </u>				
Sewer Segment	#1	0.68	0.04	0	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4.50	0.68	0.04	0.00	0.01	0.00	0.02	15.17	15.2	1.00%	285.1	450	0.0%	5.3%
Sewer Segment	#2	55.05	22.40	299	25.14	10.06	0.49	1.62	3.71	1287	0	12	8883	3350	164	419	420	8883	3350	164	419	420	13235	3.01	55.73	22.44	74.16	5.84	12.59	92.59	15.17	107.8	0.74%	245.3	450	37.8%	43.9%
Sewer Segment	#3	1.42	0.37	0	0.00	0.00	0.00	0.17	0.00	0	0	0	0	0	0	44	0	8883	3350	164	462	420	13278	3.01	57.15	22.81	74.16	5.93	12.72	92.82	15.17	108.0	0.79%	253.4	450	36.6%	42.6%
Sewer Segment	#4	1.02	0.28	0	5.63	0.00	0.00	0.00	0.00	0	0	0	1521	0	0	0	0	10404	3350	164	462	420	14800	2.94	58.17	23.09	84.90	6.00	12.72	103.62	15.17	118.8	0.50%	304.1	525	34.1%	39.1%
Sewer Segment	#5	8.78	2.91	178	1.33	0.00	0.00	0.07	0.00	0	0	0	838	0	0	19	0	11242	3350	164	481	420	15657	2.90	66.95	26.00	90.69	6.76	12.77	110.23	15.17	125.4	0.55%	318.9	525	34.6%	39.3%
Sewer Segment	#6	0.31	0.20	0	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0	11242	3350	164	481	420	15657	2.90	67.26	26.20	90.69	6.81	12.77	110.28	15.17	125.5	0.30%	336.3	600	32.8%	37.3%
Sewer Segment	#7	8.93	1.67	0	3.77	0.00	0.00	0.99	1.22	0	0	0	1018	0	0	256	134	12260	3350	164	737	555	17065	2.87	76.19	27.87	97.62	7.25	13.90	118.77	15.17	133.9	0.30%	336.3	600	35.3%	39.8%
Sewer Segment	#8	1.39	0.40	0	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0	12260	3350	164	737	555	17065	2.87	77.58	28.27	97.62	7.35	13.90	118.87	15.17	134.0	0.57%	463.6	600	25.6%	28.9%
Sewer Segment	#9	9.23	1.66	0	4.66	0.00	0.00	1.01	0.00	0	0	0	1257	0	0	262	0	13518	3350	164	999	555	18584	2.82	86.81	29.93	106.03	7.78	14.66	128.48	15.17	143.7	0.60%	475.6	600	27.0%	30.2%
Sewer Segment	# 10	1.95	0.28	0	1.21	0.00	0.00	0.00	0.00	0	0	0	326	0	0	0	0	13844	3350	164	999	555	18910	2.81	88.76	30.21	108.18	7.86	14.66	130.71	15.17	145.9	0.60%	475.6	600	27.5%	30.7%
Sewer Segment	# 11	1.80	0.27	0	0.69	0.00	0.00	0.00	0.00	0	0	0	186	0	0	0	0	14030	3350	164	999	555	19097	2.81	90.56	30.48	109.41	7.93	14.66	132.00	15.17	147.2	0.65%	495.0	600	26.7%	29.7%
Sewer Segment	# 12	1.11	0.19	0	2.30	0.00	0.00	0.00	0.00	0	0	0	620	0	0	0	0	14650	3350	164	999	555	19717	2.79	91.67	30.67	113.48	7.97	14.66	136.12	15.17	151.3	46.50%	4187.0	600	3.3%	3.6%
Sewer Segment	#13	0.76	0.11	0	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0	14650	3350	164	999	555	19717	2.79	92.43	30.78	113.48	8.00	14.66	136.15	15.17	151.3	2.00%	868.4	600	15.7%	17.4%
Sewer Segment	# 14	3.09	1.00	0	1.78	0.00	0.00	1.47	0.00	0	0	0	480	0	0	380	0	15130	3350	164	1378	555	20576	2.77	95.52	31.78	116.60	8.26	15.76	140.63	15.17	155.8	3.26%	776.5	525	18.1%	20.1%
Sewer Segment	#15	1.31	0.45	0	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0	15130	3350	164	1378	555	20576	2.77	96.83	32.23	116.60	8.38	15.76	140.75	15.17	155.9	2.00%	608.2	525	23.1%	25.6%
Sewer Segment	# 16	0.18	0.09	0	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0	15130	3350	164	1378	555	20576	2.77	97.01	32.32	116.60	8.40	15.76	140.77	15.17	155.9	3.60%	816.0	525	17.3%	19.1%
Sewer Segment	# 17	0.88	0.35	0	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0	15130	3350	164	1378	555	20576	2.77	97.89	32.67	116.60	8.49	15.76	140.86	15.17	156.0	0.36%	368.4	600	38.2%	42.4%
Sewer Segment	# 18	1.23	0.40	0	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0	15130	3350	164	1378	555	20576	2.77	99.12	33.07	116.60	8.60	15.76	140.97	15.17	156.1	0.36%	368.4	600	38.3%	42.4%
Trunk Sewer																											l				1 '		Í				

- The population equivalent for medium density development (appartments) was assumed at 270 people/hectare
- The above calculations assume only sanitary flow from the drainage area in the combined sewers The post development flow can be supported by the existing sanitary network, thus the sewers can support the proposed development.

The post development flow can be supported by the existing sanitary network, ruits the sewers can support our proposal development.

CUMAP data and Plan Profiles were used to collect pipe skepe and size information.

Future Developments within our Drainage Area were included in our External Analysis. Population assumed for 25 St. Dennis Drive Development: 209 1-Bedroom x 1.4 people/unit = 293 persons, 156 2-Bedroom x 2.1 people/unit = 426 persons, 103 3-Bedroom x 3.1 people/unit = 319 persons, 5.4-Bedroom x 3.7 people/unit = 19 persons, 23 without sex 2.7 people/unit = 62 persons, 0.11 ha commercial area x 110 people/s = 12 persons, 0.076 ha.

Prepared by: Isaak Chlorotiris, P.E., M.A.Sc.
Reviewed by: John Pasalidis, P.Eng., M.A.Sc.

Ⅲ Lithos

Project:
Project: UD21-110
City of Toronto

Ⅲ Lithos

EXTERNAL SANITARY SEWER SEGMENTS 48 Grenoble Dr

WET WEATHER

250 Uciday - existing institutional commercial
240 Uciday - existing residential w = Peaking Factor (residential) = 1 + 14(4+P^+.5) where P = population in 1000's
a = average daily per capits flow (zm./day) 1 = unit of peak estinaneous flow
(g) = peak position flow (L/s) (Q) = PA(MSA (4.6))
Q (W) = peak estraneous flow (U.s) Q(W) = Q(()+Q(F) (U.s) where I = 0.26 Us/ha, and A = drainage attea - commercial area (ha)

																			City of To	ronto													Q (d) = peak design flow		(L Q(C) = based on Y L/p Q(d) = Q(p) + Q(l) + Q		i equivalent (see belor	·w)		
	-				LO	CATION				_	•		•					POPULA												•		WS (CUMMUL	,						SCENARIO 3	SCENARIO 4
		1	1											RESIDENTIAL					TOTAL	TOTAL	TOTAL Hospital/Old	TOTAL	TOTAL	TOTAL	Peak Factor	Drainage	Infiltration	Foundation	RESIDENTIAL	INFILTRATION	FOUNDATION	NON RESIDENTIAL	EXISTING PEAK	PROPOSED	TOTAL PEAK	1			Pre-development	Post-development
				Semi -			Heenitel	NO14				Future Development		(@ 2.7 people/Unit,	OFFICE	Hospital/Old age	CHURCH	COMMERCIAL	RESIDENTIAL	OFFICE	age	CHURCH	COMMERCIAL	PEOPLE	(residential)	Area	Area	Area		WET WEATHER	ALLOWANCE	RESIDENTIAL	FLOW	FLOW	DESIGN FLOW	GRADE I	Max. Allowable	PIPE	% of DESIGN	% of DESIGN
DESCRIPTION	Sewer Segment based on CUMAP Drawing	-	Infiltration Area	Townhouse	-		age	Church	/School C	Commercial	(Residential)	(Church)	(Commercial)	and 270 people/ha)	(@ 330 people/ha)	(@ 333 people/ha)	(258 people/ha)	(@ 110people/ha	(cummulative)	(cummulative)	(cummulative)		(cummulative)			(cummulative)				Q (I)	Q (F)	Q (C)	(Cummulative)	Q(prop.)*		(used)		SIZE	CAPACITY (%)	CAPACITY
column number	based on CUMAP Drawing	(hectares)	(hectares)	(units)	(hectares)	(hectares)	s) (hectar	es) (hec	tares) R	(hectares)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(persons)	(dimensionless)	(hectares) 25	(hectares) 26	(hectares)	(L/s) 28	(L/s) 29	(L/s) 30	(L/s) 31	(L/s) 32	(L/s) 33	(L/s) 34	(%)	(===)	(mm) 37	(%)	(%)
DOWNSTREAM SEW	ER SEGMENTS																																							
Sewer Segment	# 1	0.68	0.04	0	0.00	0.00	0.00	0.	00	0.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4.50	0.68	0.04	0.04	0.00	0.01	0.13	0.00	0.15	15.17	15.3	1.00%	285.1	450	0.1%	5.4%
Sewer Segment	#2	55.05	22.40	299	25.14	10.06	0.49) 1.	62	3.71	1287	0	12	8883	3350	164	419	420	8883	3350	164	419	420	13235	3.01	55.73	22.44	22.44	74.16	5.84	67.33	12.59	159.92	15.17	175.1	0.74%	245.3	450	65.2%	71.4%
Sewer Segment	#3	1.42	0.37	0	0.00	0.00	0.00	0.	17	0.00	0	0	0	0	0	0	44	0	8883	3350	164	462	420	13278	3.01	57.15	22.81	22.81	74.16	5.93	68.44	12.72	161.25	15.17	176.4	0.79%	253.4	450	63.6%	69.6%
Sewer Segment	# 4	1.02	0.28	0	5.63	0.00	0.00	0.	00	0.00	0	0	0	1521	0	0	0	0	10404	3350	164	462	420	14800	2.94	58.17	23.09	23.09	84.90	6.00	69.28	12.72	172.90	15.17	188.1	0.50%	304.1	525	56.9%	61.8%
Sewer Segment	# 5	8.78	2.91	178	1.33	0.00	0.00	0.	07	0.00	0	0	0	838	0	0	19	0	11242	3350	164	481	420	15657	2.90	66.95	26.00	26.00	90.69	6.76	78.01	12.77	188.24	15.17	203.4	0.55%	318.9	525	59.0%	63.8%
Sewer Segment	#6	0.31	0.20	0	0.00	0.00	0.00	0.	00	0.00	0	0	0	0	0	0	0	0	11242	3350	164	481	420	15657	2.90	67.26	26.20	26.20	90.69	6.81	78.61	12.77	188.89	15.17	204.1	0.30%	336.3	600	56.2%	60.7%
Sewer Segment	# 7	8.93	1.67	0	3.77	0.00	0.00	0.	99	1.22	0	0	0	1018	0	0	256	134	12260	3350	164	737	555	17065	2.87	76.19	27.87	27.87	97.62	7.25	83.62	13.90	202.39	15.17	217.6	0.30%	336.3	600	60.2%	64.7%
Sewer Segment	#8	1.39	0.40	0	0.00	0.00	0.00	0.	00	0.00	0	0	0	0	0	0	0	0	12260	3350	164	737	555	17065	2.87	77.58	28.27	28.27	97.62	7.35	84.82	13.90	203.69	15.17	218.9	0.57%	463.6	600	43.9%	47.2%
Sewer Segment	#9	9.23	1.66	0	4.66	0.00	0.00) 1.	01	0.00	0	0	0	1257	0	0	262	0	13518	3350	164	999	555	18584	2.82	86.81	29.93	29.93	106.03	7.78	89.80	14.66	218.27	15.17	233.4	0.60%	475.6	600	45.9%	49.1%
Sewer Segment	# 10	1.95	0.28	0	1.21	0.00	0.00	0.	00	0.00	0	0	0	326	0	0	0	0	13844	3350	164	999	555	18910	2.81	88.76	30.21	30.21	108.18	7.86	90.64	14.66	221.34	15.17	236.5	0.60%	475.6	600	46.5%	49.7%
Sewer Segment	# 11	1.80	0.27	0	0.69	0.00	0.00	0.	00	0.00	0	0	0	186	0	0	0	0	14030	3350	164	999	555	19097	2.81	90.56	30.48	30.48	109.41	7.93	91.45	14.66	223.45	15.17	238.6	0.65%	495.0	600	45.1%	48.2%
Sewer Segment	# 12	1.11	0.19	0	2.30	0.00	0.00	0.	00	0.00	0	0	0	620	0	0	0	0	14650	3350	164	999	555	19717	2.79	91.67	30.67	30.67	113.48	7.97	92.02	14.66	228.14	15.17	243.3	46.50%	4187.0	600	5.4%	5.8%
Sewer Segment	#13	0.76	0.11	0	0.00	0.00	0.00	0.	00	0.00	0	0	0	0	0	0	0	0	14650	3350	164	999	555	19717	2.79	92.43	30.78	30.78	113.48	8.00	92.35	14.66	228.50	15.17	243.7	2.00%	868.4	600	26.3%	28.1%
Sewer Segment	# 14	3.09	1.00	0	1.78	0.00	0.00) 1.	47	0.00	0	0	0	480	0	0	380	0	15130	3350	164	1378	555	20576	2.77	95.52	31.78	31.78	116.60	8.26	95.35	15.76	235.98	15.17	251.2	3.26%	776.5	525	30.4%	32.3%
Sewer Segment	#15	1.31	0.45	0	0.00	0.00	0.00	0.	00	0.00	0	0	0	0	0	0	0	0	15130	3350	164	1378	555	20576	2.77	96.83	32.23	32.23	116.60	8.38	96.70	15.76	237.45	15.17	252.6	2.00%	608.2	525	39.0%	41.5%
Sewer Segment	# 16	0.18	0.09	0	0.00	0.00	0.00	0.	00	0.00	0	0	0	0	0	0	0	0	15130	3350	164	1378	555	20576	2.77	97.01	32.32	32.32	116.60	8.40	96.97	15.76	237.74	15.17	252.9	3.60%	816.0	525	29.1%	31.0%
Sewer Segment	# 17	0.88	0.35	0	0.00	0.00	0.00	0.	00	0.00	0	0	0	0	0	0	0	0	15130	3350	164	1378	555	20576	2.77	97.89	32.67	32.67	116.60	8.49	98.02	15.76	238.88	15.17	254.1	0.36%	368.4	600	64.8%	69.0%
Sewer Segment	# 18	1.23	0.40	0	0.00	0.00	0.00	0.	00	0.00	0	0	0	0	0	0	0	0	15130	3350	164	1378	555	20576	2.77	99.12	33.07	33.07	116.60	8.60	99.22	15.76	240.19	15.17	255.4	0.36%	368.4	600	65.2%	69.3%

. Calculated flows are estimated based on the existing development within the drainage area.

The population equivalent for medium density development (appartments) was assumed at 270 people/hectare.

The above calculations assume only sanitary flow from the drainage area in the combined sewers

The post development flow can be supported by the existing sanitary network, thus the sewers can support the proposed development.

4. The post development flow can be supported by the existing sanilary network, thus the sewers can support the proposed development.

5. CUMAP data and Plan Profiles were used to collect pipe slope and size information.

6. Future Developments within our Drainage Area were included in our External Analysis. Population assumed for 25 St. Dennis Drive Development: 209 1-Bedroom x 1.4 people/unit = 293 persons, 156 2-Bedroom x 2.1 people/unit = 426 persons, 103 3-Bedroom x 3.1 people/unit = 319 persons, 5.4-Bedroom x 3.7 people/unit = 19 persons, 23 townhomes x 2.7 people/unit = 62 persons, 0.01 ha commercial area x 110 people/unit = 12 persons, 0.076 ha.

Prepared by: Saak Chirofortiis, P.E., M.A.Sc.
Reviewed by: John Pasalidis, P.Eng., M.A.Sc.
Date: March 2022

Project:
Project: UD21-110
City of Toronto

HYDRAULIC GRADE LINE ANALYSIS DRY WEATHER - PRE-DEVELOPMENT CONDITIONS

48 Grenoble Dr

City of Toronto

						OII.	y or roronto										SCENARIO 5
DESCRIPTION	Sewer Segment based on CUMAP Drawing	PEAK FLOW (Cummulative) (L/s)	GRADE (used) (%)	Max. Allowable Flow (L/s)	PIPE SIZE (mm)	Pre-development % of DESIGN CAPACITY (%)	PIPE LENGTH	GROUND ELEVATION (m)	UPPER INVERT (m)	UPPER OBVERT (m)	LOWER INVERT (m)	LOWER OBVERT (m)	FULL FLOW VELOCITY (m/s)	FULL FLOW CAPACITY (L/s)	U/s HGL (m)	U/s SURCHARGE (m)	U/s FREEBOARD (m)
column number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
DOWNSTREAM SEW	ER SEGMENTS																
Sewer Segment	#1	0.02	1.00%	285.1	450	0.0%	28.5	124.730	119.320	119.770	118.700	119.150	1.79	285.11	119.320	0.00	5.41
Sewer Segment	#2	92.59	0.74%	245.3	450	37.8%	67.7	126.000	118.660	119.110	118.160	118.610	1.54	245.26	118.853	0.00	7.15
Sewer Segment	#3	92.82	0.79%	253.4	450	36.6%	90.5	122.850	118.130	118.580	117.420	117.870	1.59	253.41	118.320	0.00	4.53
Sewer Segment	# 4	103.62	0.50%	304.1	525	34.1%	87.2	120.090	117.150	117.675	116.700	117.225	1.40	304.10	117.361	0.00	2.73
Sewer Segment	# 5	110.23	0.55%	318.9	525	34.6%	64.0	121.310	116.670	117.195	116.320	116.845	1.47	318.94	116.885	0.00	4.42
Sewer Segment	# 6	110.28	0.30%	336.3	600	32.8%	102.4	124.050	116.190	116.790	115.930	116.530	1.19	336.31	116.426	0.00	7.62
Sewer Segment	#7	118.77	0.30%	336.3	600	35.3%	99.7	122.520	115.900	116.500	115.620	116.220	1.19	336.31	116.146	0.00	6.37
Sewer Segment	#8	118.87	0.57%	463.6	600	25.6%	74.1	121.050	115.350	115.950	114.930	115.530	1.64	463.57	115.556	0.00	5.49
Sewer Segment	# 9	128.48	0.60%	475.6	600	27.0%	67.1	119.940	114.900	115.500	114.500	115.100	1.68	475.61	115.109	0.00	4.83
Sewer Segment	# 10	130.71	0.60%	475.6	600	27.5%	61.0	119.480	114.470	115.070	114.100	114.700	1.68	475.61	114.679	0.00	4.80
Sewer Segment	# 11	132.00	0.65%	495.0	600	26.7%	48.2	119.170	114.070	114.670	113.760	114.360	1.75	495.03	114.279	0.00	4.89
Sewer Segment	# 12	136.12	46.50%	4187.0	600	3.3%	20.7	116.280	113.150	113.750	103.530	104.130	14.81	4187.00	113.216	0.00	3.06
Sewer Segment	#13	136.15	2.00%	868.4	600	15.7%	5.4	106.520	103.070	103.670	102.940	103.540	3.07	868.34	103.248	0.00	3.27
Sewer Segment	# 14	140.63	3.26%	776.5	525	18.1%	113.4	105.760	99.710	100.235	96.010	96.535	3.59	776.50	99.859	0.00	5.90
Sewer Segment	#15	140.75	2.00%	608.2	525	23.1%	104.2	98.300	94.820	95.345	92.730	93.255	2.81	608.20	94.990	0.00	3.31
Sewer Segment	# 16	140.77	3.60%	816.0	525	17.3%	55.2	96.310	92.680	93.205	90.700	91.225	3.77	815.99	92.825	0.00	3.49
Sewer Segment	# 17	140.86	0.36%	368.4	600	38.2%	97.5	93.720	88.740	89.340	88.390	88.990	1.30	368.41	88.997	0.00	4.72
Sewer Segment	# 18	140.97	0.36%	368.4	600	38.3%	97.5	91.130	88.360	88.960	88.010	88.610	1.30	368.41	88.617	0.00	2.51
Trunk Sewer																	

NOTES

- 1. Calculated flows are estimated based on the existing development within the drainage area.
- Flows were retrieved from the External Sanitary Analysis design sheet.
- 3. Information on the existing Sanitary System, were retrieved from the City.

Prepared by: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed by: John Pasalidis, P.Eng., M.A.Sc. Date: March 2022 Project: 48 Grenoble Dr Project: UD21-110 City of Toronto

Sheet 4 OF 7

HYDRAULIC GRADE LINE ANALYSIS DRY WEATHER - POST-DEVELOPMENT CONDITIONS

48 Grenoble Dr

City of Toronto

						Oit;	or roronto										SCENARIO 6
DESCRIPTION	Sewer Segment	PROPOSED PEAK FLOW (Cummulative)	GRADE (used)	Max. Allowable	PIPE SIZE	Post-development % of DESIGN CAPACITY	PIPE LENGTH	GROUND ELEVATION	UPPER INVERT	UPPER OBVERT	LOWER INVERT	LOWER OBVERT	FULL FLOW VELOCITY	FULL FLOW	U/s HGL	U/s SURCHARGE	U/s FREEBOARD
DESCRIPTION	based on CUMAP Drawing	(L/s)	(%)	(L/s)	(mm)	(%)	(m)	(m)	(m)	(m)	(m)	(m)	(m/s)	(L/s)	(m)	(m)	(m)
column number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
DOWNSTREAM SEW	ER SEGMENTS																
Sewer Segment	# 1	15.19	1.00%	285.1	450	5.3%	28.5	124.730	119.320	119.770	118.700	119.150	1.79	285.11	119.388	0.00	5.34
Sewer Segment	#2	107.76	0.74%	245.3	450	43.9%	67.7	126.000	118.660	119.110	118.160	118.610	1.54	245.26	118.868	0.00	7.13
Sewer Segment	#3	107.99	0.79%	253.4	450	42.6%	90.5	122.850	118.130	118.580	117.420	117.870	1.59	253.41	118.334	0.00	4.52
Sewer Segment	# 4	118.79	0.50%	304.1	525	39.1%	87.2	120.090	117.150	117.675	116.700	117.225	1.40	304.10	117.378	0.00	2.71
Sewer Segment	#5	125.40	0.55%	318.9	525	39.3%	64.0	121.310	116.670	117.195	116.320	116.845	1.47	318.94	116.898	0.00	4.41
Sewer Segment	#6	125.45	0.30%	336.3	600	37.3%	102.4	124.050	116.190	116.790	115.930	116.530	1.19	336.31	116.443	0.00	7.61
Sewer Segment	#7	133.94	0.30%	336.3	600	39.8%	99.7	122.520	115.900	116.500	115.620	116.220	1.19	336.31	116.164	0.00	6.36
Sewer Segment	#8	134.04	0.57%	463.6	600	28.9%	74.1	121.050	115.350	115.950	114.930	115.530	1.64	463.57	115.569	0.00	5.48
Sewer Segment	#9	143.65	0.60%	475.6	600	30.2%	67.1	119.940	114.900	115.500	114.500	115.100	1.68	475.61	115.125	0.00	4.82
Sewer Segment	# 10	145.88	0.60%	475.6	600	30.7%	61.0	119.480	114.470	115.070	114.100	114.700	1.68	475.61	114.699	0.00	4.78
Sewer Segment	# 11	147.17	0.65%	495.0	600	29.7%	48.2	119.170	114.070	114.670	113.760	114.360	1.75	495.03	114.295	0.00	4.88
Sewer Segment	# 12	151.29	46.50%	4187.0	600	3.6%	20.7	116.280	113.150	113.750	103.530	104.130	14.81	4187.00	113.228	0.00	3.05
Sewer Segment	#13	151.32	2.00%	868.4	600	17.4%	5.4	106.520	103.070	103.670	102.940	103.540	3.07	868.34	103.253	0.00	3.27
Sewer Segment	# 14	155.80	3.26%	776.5	525	20.1%	113.4	105.760	99.710	100.235	96.010	96.535	3.59	776.50	99.868	0.00	5.89
Sewer Segment	#15	155.92	2.00%	608.2	525	25.6%	104.2	98.300	94.820	95.345	92.730	93.255	2.81	608.20	95.001	0.00	3.30
Sewer Segment	# 16	155.94	3.60%	816.0	525	19.1%	55.2	96.310	92.680	93.205	90.700	91.225	3.77	815.99	92.833	0.00	3.48
Sewer Segment	# 17	156.03	0.36%	368.4	600	42.4%	97.5	93.720	88.740	89.340	88.390	88.990	1.30	368.41	89.009	0.00	4.71
Sewer Segment	# 18	156.14	0.36%	368.4	600	42.4%	97.5	91.130	88.360	88.960	88.010	88.610	1.30	368.41	88.629	0.00	2.50
Trunk Sewer																	1

NOTES:

- 1. Calculated flows are estimated based on the existing development within the drainage area.
- 2. Flows were retrieved from the External Sanitary Analysis design sheet.
- 3. Information on the existing Sanitary System, were retrieved from the City.

Prepared by: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed by: John Pasalidis, P.Eng., M.A.Sc. Date: March 2022 Project: 48 Grenoble Dr Project: UD21-110

Project: UD21-110
City of Toronto

Sheet 5 OF 7

HYDRAULIC GRADE LINE ANALYSIS WET WEATHER - PRE-DEVELOPMENT CONDITIONS

48 Grenoble Dr

City of Toronto

																	SCENARIO 7
		EXISTING				Pre-development											
DESCRIPTION	Sewer Segment based on CUMAP Drawing	PEAK FLOW (Cummulative)	GRADE (used) (%)	Max. Allowable	PIPE SIZE (mm)	% of DESIGN CAPACITY (%)	PIPE LENGTH	GROUND ELEVATION (m)	UPPER INVERT (m)	UPPER OBVERT (m)	LOWER INVERT (m)	LOWER OBVERT (m)	FULL FLOW VELOCITY (m/s)	FULL FLOW CAPACITY (L/s)	U/s HGL (m)	U/s SURCHARGE (m)	U/s FREEBOARD (m)
column number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
DOWNSTREAM SEW	/ER SEGMENTS	-								·							
Sewer Segment	# 1	0.15	1.00%	285.1	450	0.1%	28.5	124.730	119.320	119.770	118.700	119.150	1.79	285.11	119.320	0.00	5.41
Sewer Segment	#2	159.92	0.74%	245.3	450	65.2%	67.7	126.000	118.660	119.110	118.160	118.610	1.54	245.26	118.921	0.00	7.08
Sewer Segment	#3	161.25	0.79%	253.4	450	63.6%	90.5	122.850	118.130	118.580	117.420	117.870	1.59	253.41	118.389	0.00	4.46
Sewer Segment	# 4	172.90	0.50%	304.1	525	56.9%	87.2	120.090	117.150	117.675	116.700	117.225	1.40	304.10	117.432	0.00	2.66
Sewer Segment	# 5	188.24	0.55%	318.9	525	59.0%	64.0	121.310	116.670	117.195	116.320	116.845	1.47	318.94	116.958	0.00	4.35
Sewer Segment	# 6	188.89	0.30%	336.3	600	56.2%	102.4	124.050	116.190	116.790	115.930	116.530	1.19	336.31	116.510	0.00	7.54
Sewer Segment	#7	202.39	0.30%	336.3	600	60.2%	99.7	122.520	115.900	116.500	115.620	116.220	1.19	336.31	116.233	0.00	6.29
Sewer Segment	#8	203.69	0.57%	463.6	600	43.9%	74.1	121.050	115.350	115.950	114.930	115.530	1.64	463.57	115.627	0.00	5.42
Sewer Segment	# 9	218.27	0.60%	475.6	600	45.9%	67.1	119.940	114.900	115.500	114.500	115.100	1.68	475.61	115.184	0.00	4.76
Sewer Segment	# 10	221.34	0.60%	475.6	600	46.5%	61.0	119.480	114.470	115.070	114.100	114.700	1.68	475.61	114.757	0.00	4.72
Sewer Segment	# 11	223.45	0.65%	495.0	600	45.1%	48.2	119.170	114.070	114.670	113.760	114.360	1.75	495.03	114.352	0.00	4.82
Sewer Segment	# 12	228.14	46.50%	4187.0	600	5.4%	20.7	116.280	113.150	113.750	103.530	104.130	14.81	4187.00	113.240	0.00	3.04
Sewer Segment	#13	228.50	2.00%	868.4	600	26.3%	5.4	106.520	103.070	103.670	102.940	103.540	3.07	868.34	103.298	0.00	3.22
Sewer Segment	# 14	235.98	3.26%	776.5	525	30.4%	113.4	105.760	99.710	100.235	96.010	96.535	3.59	776.50	99.907	0.00	5.85
Sewer Segment	#15	237.45	2.00%	608.2	525	39.0%	104.2	98.300	94.820	95.345	92.730	93.255	2.81	608.20	95.048	0.00	3.25
Sewer Segment	# 16	237.74	3.60%	816.0	525	29.1%	55.2	96.310	92.680	93.205	90.700	91.225	3.77	815.99	92.872	0.00	3.44
Sewer Segment	# 17	238.88	0.36%	368.4	600	64.8%	97.5	93.720	88.740	89.340	88.390	88.990	1.30	368.41	89.088	0.00	4.63
Sewer Segment	# 18	240.19	0.36%	368.4	600	65.2%	97.5	91.130	88.360	88.960	88.010	88.610	1.30	368.41	88.708	0.00	2.42
Trunk Sewer																	1

NOTES

- 1. Calculated flows are estimated based on the existing development within the drainage area.
- Flows were retrieved from the External Sanitary Analysis design sheet.
- 3. Information on the existing Sanitary System, were retrieved from the City.

Prepared by: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed by: John Pasalidis, P.Eng., M.A.Sc. Date: March 2022 Project: 48 Grenoble Dr Project: UD21-110 City of Toronto

110

Sheet 6 OF 7

PROPOSED

251.15

252.62

252 91

254.05

255.36

3.26%

2.00%

3 60%

0.36%

0.36%

776.5

608.2

816.0

368.4

368.4

525

525

525

600

600

HYDRAULIC GRADE LINE ANALYSIS **WET WEATHER - POST-DEVELOPMENT CONDITIONS**

48 Grenoble Dr

City of Toronto

Post-development

32.3%

41.5%

31.0%

69.0%

69.3%

PEAK FLOW GRADE Max. Allowable PIPE % of DESIGN GROUND UPPER UPPER LOWER LOWER FULL FLOW FULL FLOW U/s Sewer Segment SIZE FREEBOARD (Cummulative) CAPACITY PIPE LENGTH CAPACITY SURCHARGE (used) Flow **ELEVATION** INVERT OBVERT INVERT OBVERT VELOCITY DESCRIPTION HGL based on CUMAP Drawing (L/s) (mm) (%) (L/s) (%) (m) (m) (m) (m) (m) (m) (m/s) (L/s) (m) (m) (m) column numb DOWNSTREAM SEWER SEGMENTS Sewer Segment 15.32 1.00% 285.1 450 5.4% 28.5 124.730 119.32 119.77 1.79 119.388 5.34 175.09 0.74% 245.3 71.4% 67.7 126.000 118.66 119.11 118.61 118.937 Sewer Seament 176 42 0.79% 253 4 69.6% 90.5 122.850 118 405 4 45 Sewer Segment 450 118.13 118.58 117.42 117.87 1.59 253.41 0.00 Sewer Seament #4 188 07 0.50% 304 1 525 61.8% 87 2 120 090 117 15 117 68 116.70 117 23 1 40 304 10 117 448 0.00 2 64 0.55% 64.0 121.310 116.972 4 34 Sewer Segment 203.41 318.9 525 63.8% 116.67 117.20 116.32 116.85 1.47 318.94 0.00 #6 204.06 0.30% 336.3 600 60.7% 102.4 124.050 116.19 116.79 115.93 116.53 1.19 336.31 116.527 0.00 7.52 Sewer Segment 217.56 0.30% 336.3 600 64.7% 99.7 122.520 116.50 115.62 116.22 1.19 336.31 116,248 0.00 6.27 Sewer Segment Sewer Segment 218.86 0.57% 463.6 600 47.2% 74.1 115.35 115.95 115.53 463.57 115.637 114.50 #9 233.44 0.60% 475.6 600 49.1% 67.1 119.940 114.90 115.50 115.10 1.68 475.61 115.195 0.00 4.74 Sewer Segment # 10 114.770 Sewer Segment 236.51 0.60% 475.6 600 49.7% 61.0 119.480 114.47 115.07 114.10 114.70 1.68 475.61 0.00 4.71 # 11 0.65% 48.2% 48.2 114.360 4.81 Sewer Segment 238.62 495.0 600 119.170 114.07 114.67 113.76 114.36 1.75 495.03 0.00 Sewer Segment # 12 243.31 46.50% 4187.0 5.8% 20.7 116.280 113.15 113.75 103.53 104.13 14.81 4187.00 113.247 0.00 3.03 5.4 106.520 103.67 868.34 103.306 243.67 2.00% 868.4 600 28.1% 103.07 102.94 103.54 3.07 0.00 3.21

113.4

104.2

55.2

97.5

105.760

98.300

96.310

93.720

91.130

99.71

94.82

92.68

88.74

88.36

100.24

95.35

93.21

89.34

88.96

96.01

92.73

90.70

88.39

88.01

96.54

93.26

91.23

88.99

88.61

3.59

2.81

3 77

1.30

776.50

608.20

815.99

368.41

368.41

99.913

95.055

92.880

89.104

88.724

0.00

0.00

0.00

0.00

5.85

3.24

3 4 3

4.62

NOTES:

Sewer Segment

Sewer Seament Sewer Segment

Sewer Segment

Sewer Segment

Sewer Segment Trunk Sewer

- Calculated flows are estimated based on the existing development within the drainage area.
- Flows were retrieved from the External Sanitary Analysis design sheet.

14

16

17

18

Information on the existing Sanitary System, were retrieved from the City.

Prepared by: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed by: John Pasalidis, P.Eng., M.A.Sc.

Date: March 2022

Project: 48 Grenoble Dr Project: UD21-110

City of Toronto

Sheet 7 OF 7

SCENARIO 8

Appendix E

Water Data Analysis

WATER DEMAND

48 Grenoble Dr

Project No: UD21-110 Date: March 2022

Prepared by: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed by: John Pasalidis, P.Eng., M.A.Sc.

East Tower

Note: The levels indicated, reference the floors

with the largest areas (refer to building stats)

Fire Flow Calculation

F= 220 C (A)^{1/2}

1

Where F= Fire flow in Lpm

C= construction type coefficient

= 1.0 ordinary construction

A = total floor area in sq.m. excluding basements, includes garage*

Area Applied

Level 2= 584.0 m^2 100%Level 1= 584.0 m^2 25%Level 3= 584.0 m^2 25%

= 876 sq.m.

F = 6,511 L/min

F = 7,000 L/min Round to nearest 1000 l/min

2 Occupancy Reduction

15% reduction for limited combustible occupancy

F = 5950 L/min

3 Sprinkler Reduction

30% Reduction for NFPA Sprinkler System

F = 4165 l/min

4 Separation Charge

20% North 3.1m to 10m 0% East > 45m 0% South > 45m 0% West > 45m

20% Total Separation Charge, 1190 L/min

F = 5,355 L/min 89.25 L/s F = 1415 US GPM

Domestic Flow Calculations

Population High Rise = 740 Persons from Site Statistics

Average Day Demand = 190 L/cap/day 1 US Gallon=3.785 L

Residential Flow= 1.63 L/s

Retail/Commercial Area= 0 m2 from Site Statistics

Average Day Demand= 2.8 L/m2/day 1 US GPM=15.852L/s

Retail/Commercial Flow= 0.00 L/s

Total Flow= 1.63 L/s = 25.36 US GPM

Max. Daily Demand Peaking Factor = 1.5

Max. Daily Demand = 2.44 L/s = 39 US GPM

or

Max. Hourly Demand Peaking Factor = 2.25

Max. Hourly Demand = 3.66 L/s = 58 US GPM

Max Daily Demand = 2.44 L/s Fire Flow = 89.25 L/s

Required 'Design' Flow = 91.69 L/s Note: Required 'Design' Flow is the maximum of either:

1453 US GPM 1) Fire Flow + Maximum Daily Demand

2) Maximum Hourly Demand

WATER DEMAND

48 Grenoble Dr

Project No: UD21-110 Date: March 2022

Prepared by: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed by: John Pasalidis, P.Eng., M.A.Sc.

Note: The levels indicated, reference the floors

with the largest areas (refer to building stats)

Podium

Fire Flow Calculation

1 F= 220 C (A)^{1/2}

Where F= Fire flow in Lpm

C= construction type coefficient

= 1.0 ordinary construction

A = total floor area in sq.m. excluding basements, includes garage*

Area Applied

Level 4= 3092.0 m² 100% Level 3= 3092.0 m² 25% Level 5= 3092.0 m² 25%

= 4,638 sq.m.

F = 14,983 L/min

F = 15,000 L/min Round to nearest 1000 l/min

2 Occupancy Reduction

15% reduction for limited combustible occupancy

F = 12750 L/min

3 Sprinkler Reduction

30% Reduction for NFPA Sprinkler System

F = 8925 I/min

4 Separation Charge

20% North 3.1m to 10m 0% East > 45m 0% South > 45m 0% West > 45m

20% Total Separation Charge, 2550 L/min

FALSE The total percentage shall be the sum of the percentage for all sides, but shall not exceed 75%

F = 11,475 L/min 191.25 L/s F = 3032 US GPM

Domestic Flow Calculations

Population High Rise = 194 Persons from Site Statistics

Average Day Demand = 190 L/cap/day 1 US Gallon=3.785 L

Residential Flow= 0.43 L/s

Retail/Commercial Area= 0 m2 from Site Statistics

Average Day Demand= 2.8 L/m2/day 1 US GPM=15.852L/s

Retail/Commercial Flow= 0.00 L/s

Total Flow= 0.43 L/s = 6.65 US GPM

Max. Daily Demand Peaking Factor = 1.5

Max. Daily Demand = 0.64 L/s = 10 US GPM

or

Max. Hourly Demand Peaking Factor = 2.25

Max. Hourly Demand = 0.96 L/s = 15 US GPM

Max Daily Demand = 0.64 L/s Fire Flow = 191.25 L/s

Required 'Design' Flow = 191.89 L/s Note: Required 'Design' Flow is the maximum of either:

3042 US GPM 1) Fire Flow + Maximum Daily Demand

2) Maximum Hourly Demand

Ⅲ Lithos

WATER DEMAND

48 Grenoble Dr

Project No: UD21-110 Date: March 2022

Prepared by: Isaak Chlorotiris, P.E., M.A.Sc. Reviewed by: John Pasalidis, P.Eng., M.A.Sc.

Note: The levels indicated, reference the floors

with the largest areas (refer to building stats)

West Tower

Fire Flow Calculation

F= 220 C (A)^{1/2}

1

Where F= Fire flow in Lpm

C= construction type coefficient

= 1.0 ordinary construction

A = total floor area in sq.m. excluding basements, includes garage*

Area Applied

Level 2= 949.0 m² 100% Level 1= 949.0 m² 25% Level 3= 949.0 m² 25%

= 1,424 sq.m.

F = 8,300 L/min

F = 8,000 L/min Round to nearest 1000 l/min

2 Occupancy Reduction

15% reduction for limited combustible occupancy

F = 6800 L/min

3 Sprinkler Reduction

30% Reduction for NFPA Sprinkler System

F = 4760 l/min

4 Separation Charge

20% North 3.1m to 10m 0% East > 45m 0% South > 45m 0% West > 45m

20% Total Separation Charge, 1360 L/min

FALSE The total percentage shall be the sum of the percentage for all sides, but shall not exceed 75%

F = 6,120 L/min 102.00 L/s F = 1617 US GPM

Domestic Flow Calculations

Population High Rise = 809 Persons from Site Statistics

Average Day Demand = 190 L/cap/day 1 US Gallon=3.785 L

Residential Flow= 1.78 L/s

Retail/Commercial Area= 0 m2 from Site Statistics

Average Day Demand= 2.8 L/m2/day 1 US GPM=15.852L/s

Retail/Commercial Flow= 0.00 L/s

Total Flow= 1.78 L/s = 27.72 US GPM

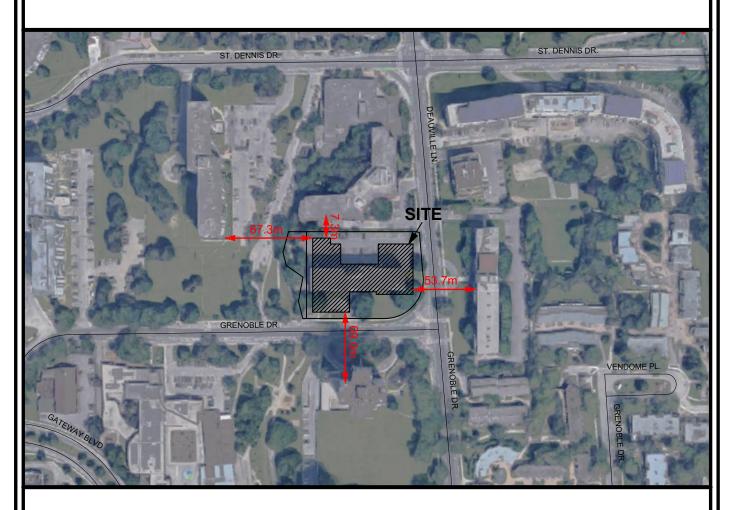
Max. Daily Demand Peaking Factor = 1.5

Max. Daily Demand = 2.67 L/s = 42 US GPM

OI

Max. Hourly Demand Peaking Factor = 2.25

Max. Hourly Demand = 4.00 L/s = 63 US GPM


Max Daily Demand = 2.67 L/s Fire Flow = 102.00 L/s

Required 'Design' Flow = 104.67 L/s Note: Required 'Design' Flow is the maximum of either:

1659 US GPM 1) Fire Flow + Maximum Daily Demand

2) Maximum Hourly Demand

SEPARATION DISTANCES

RESIDENTIAL USE DEVELOPMENT 48 GRENOBLE DRIVE TORONTO, ONTARIO

	DATE:	MARCH 2022	PROJECT No:	PUD21-110
150 Bermondsey Road, Toronto, Ontario M4A 1Y1	SCALE:	N.T.S.	FIGURE No:	FIG 4